Clément Beust, E. Franquet, J. Bédécarrats, P. García, J. Pouvreau
{"title":"Influence of the modeling parameters on the numerical CFD simulation of a shell-and-tube latent heat storage system with circular fins","authors":"Clément Beust, E. Franquet, J. Bédécarrats, P. García, J. Pouvreau","doi":"10.1063/1.5117722","DOIUrl":null,"url":null,"abstract":"Thermal energy storage systems using Phase-Change Materials (PCM) are appropriate for the storage of steam; these systems are interesting thermal storage candidates for the Direct Steam Generation (DSG) solar power plants. This paper presents a 2D axisymmetric numerical study of the melting and solidification of a PCM in a laboratory scale shell- and-tube latent heat storage system with external circular fins. The simulation results are compared with experimental measurements, for the heat charging and discharging processes. The influence of two parameters, the mushy zone constant and the temperature range where phase change takes place, is observed on the PCM temperature and the melting time; they affect the local phenomenology, but they do not have much influence on the global performances of the studied storage module.Thermal energy storage systems using Phase-Change Materials (PCM) are appropriate for the storage of steam; these systems are interesting thermal storage candidates for the Direct Steam Generation (DSG) solar power plants. This paper presents a 2D axisymmetric numerical study of the melting and solidification of a PCM in a laboratory scale shell- and-tube latent heat storage system with external circular fins. The simulation results are compared with experimental measurements, for the heat charging and discharging processes. The influence of two parameters, the mushy zone constant and the temperature range where phase change takes place, is observed on the PCM temperature and the melting time; they affect the local phenomenology, but they do not have much influence on the global performances of the studied storage module.","PeriodicalId":21790,"journal":{"name":"SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5117722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Thermal energy storage systems using Phase-Change Materials (PCM) are appropriate for the storage of steam; these systems are interesting thermal storage candidates for the Direct Steam Generation (DSG) solar power plants. This paper presents a 2D axisymmetric numerical study of the melting and solidification of a PCM in a laboratory scale shell- and-tube latent heat storage system with external circular fins. The simulation results are compared with experimental measurements, for the heat charging and discharging processes. The influence of two parameters, the mushy zone constant and the temperature range where phase change takes place, is observed on the PCM temperature and the melting time; they affect the local phenomenology, but they do not have much influence on the global performances of the studied storage module.Thermal energy storage systems using Phase-Change Materials (PCM) are appropriate for the storage of steam; these systems are interesting thermal storage candidates for the Direct Steam Generation (DSG) solar power plants. This paper presents a 2D axisymmetric numerical study of the melting and solidification of a PCM in a laboratory scale shell- and-tube latent heat storage system with external circular fins. The simulation results are compared with experimental measurements, for the heat charging and discharging processes. The influence of two parameters, the mushy zone constant and the temperature range where phase change takes place, is observed on the PCM temperature and the melting time; they affect the local phenomenology, but they do not have much influence on the global performances of the studied storage module.