Full and partial regularity for a class of nonlinear free boundary problems

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Aram Karakhanyan
{"title":"Full and partial regularity for a class of nonlinear free boundary problems","authors":"Aram Karakhanyan","doi":"10.1016/j.anihpc.2020.09.008","DOIUrl":null,"url":null,"abstract":"<div><p><span>In this paper we classify the nonnegative global minimizers of the functional</span><span><span><span><math><msub><mrow><mi>J</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><munder><mo>∫</mo><mrow><mi>Ω</mi></mrow></munder><mi>F</mi><mo>(</mo><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>+</mo><msup><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>χ</mi></mrow><mrow><mo>{</mo><mi>u</mi><mo>&gt;</mo><mn>0</mn><mo>}</mo></mrow></msub><mo>,</mo></math></span></span></span> where <em>F</em> satisfies some structural conditions and <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>D</mi></mrow></msub></math></span> is the characteristic function of a set <span><math><mi>D</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. We compute the second variation of the energy and study the properties of the stability operator. The free boundary <span><math><mo>∂</mo><mo>{</mo><mi>u</mi><mo>&gt;</mo><mn>0</mn><mo>}</mo></math></span> can be seen as a rectifiable <span><math><mi>n</mi><mo>−</mo><mn>1</mn></math></span><span> varifold<span><span>. If the free boundary is a Lipschitz multigraph then we show that the first variation of this varifold is bounded. Hence one can use Allard's monotonicity formula to prove the existence of </span>tangent cones<span> modulo<span> a set of small Hausdorff dimension. In particular, we prove that if </span></span></span></span><span><math><mi>n</mi><mo>=</mo><mn>3</mn></math></span><span> and the ellipticity constants of the quasilinear elliptic operator generated by </span><em>F</em> are close to 1 then the conical free boundary must be flat.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.anihpc.2020.09.008","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0294144920300949","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper we classify the nonnegative global minimizers of the functionalJF(u)=ΩF(|u|2)+λ2χ{u>0}, where F satisfies some structural conditions and χD is the characteristic function of a set DRn. We compute the second variation of the energy and study the properties of the stability operator. The free boundary {u>0} can be seen as a rectifiable n1 varifold. If the free boundary is a Lipschitz multigraph then we show that the first variation of this varifold is bounded. Hence one can use Allard's monotonicity formula to prove the existence of tangent cones modulo a set of small Hausdorff dimension. In particular, we prove that if n=3 and the ellipticity constants of the quasilinear elliptic operator generated by F are close to 1 then the conical free boundary must be flat.

一类非线性自由边界问题的全正则性和部分正则性
本文对泛函jf (u)=∫ΩF(|∇u|2)+λ2χ{u>0}的非负全局极小值进行了分类,其中F满足某些结构条件,χD是集合D∧Rn的特征函数。我们计算了能量的二阶变分,并研究了稳定算子的性质。自由边界∂{u>0}可以看作是一个可校正的n - 1变量。如果自由边界是一个Lipschitz多重图,那么我们证明了这个变分的第一个变分是有界的。因此可以用Allard的单调性公式来证明切锥模于一组小Hausdorff维数的存在性。特别地,我们证明了如果n=3且由F生成的拟线性椭圆算子的椭圆常数接近于1,则圆锥自由边界一定是平坦的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信