Prediction of meteorological parameters: an a-posteriori probabilistic semantic kriging approach

Shrutilipi Bhattacharjee, Monidipa Das, S. Ghosh, S. Shekhar
{"title":"Prediction of meteorological parameters: an a-posteriori probabilistic semantic kriging approach","authors":"Shrutilipi Bhattacharjee, Monidipa Das, S. Ghosh, S. Shekhar","doi":"10.1145/2996913.2996968","DOIUrl":null,"url":null,"abstract":"Meteorological parameters are often considered as crucial factors for climatological pattern analysis. Predictions of these parameters have been studied extensively in the field of remote sensing and GIS. It is one of the most critical steps involved in most of the meteorological data mining process. Spatial interpolation is an efficient technique to yield minimal error in prediction. From existing literatures, it is evident that the land-use/land-cover (LULC) distribution of the terrain influences these parameters in a varying manner and it is important to model their behaviour for climatological analyses. However, this semantic LULC knowledge of the terrain is generally ignored in the prediction process of the meteorological parameters. Recently, we have proposed a new spatial interpolation technique, namely semantic kriging (SemK) [3,5,7], which considers the semantic LULC knowledge for land-atmospheric interaction modeling and incorporates it into the existing interpolation process for better accuracy. However, the a-priori correlation analysis of SemK ignores the effect of other nearby LULC classes on each other. This article presents a new variant of SemK, namely a-posterior probabilistic Bayesian SemK (BSemK), which extends the a-priori correlation analysis of SemK with a-posterior probabilistic analysis. The proposed approach provides more accurate estimation of the parameters. Experimentation with LST data advocates the efficacy of the proposed approach compared to the a-priori SemK and other existing interpolation techniques.","PeriodicalId":20525,"journal":{"name":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2996913.2996968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Meteorological parameters are often considered as crucial factors for climatological pattern analysis. Predictions of these parameters have been studied extensively in the field of remote sensing and GIS. It is one of the most critical steps involved in most of the meteorological data mining process. Spatial interpolation is an efficient technique to yield minimal error in prediction. From existing literatures, it is evident that the land-use/land-cover (LULC) distribution of the terrain influences these parameters in a varying manner and it is important to model their behaviour for climatological analyses. However, this semantic LULC knowledge of the terrain is generally ignored in the prediction process of the meteorological parameters. Recently, we have proposed a new spatial interpolation technique, namely semantic kriging (SemK) [3,5,7], which considers the semantic LULC knowledge for land-atmospheric interaction modeling and incorporates it into the existing interpolation process for better accuracy. However, the a-priori correlation analysis of SemK ignores the effect of other nearby LULC classes on each other. This article presents a new variant of SemK, namely a-posterior probabilistic Bayesian SemK (BSemK), which extends the a-priori correlation analysis of SemK with a-posterior probabilistic analysis. The proposed approach provides more accurate estimation of the parameters. Experimentation with LST data advocates the efficacy of the proposed approach compared to the a-priori SemK and other existing interpolation techniques.
气象参数预测:后验概率语义克里格方法
气象参数通常被认为是气候型分析的关键因素。这些参数的预测在遥感和地理信息系统领域得到了广泛的研究。它是大多数气象数据挖掘过程中最关键的步骤之一。空间插值是一种有效的预测误差最小的方法。从现有文献中可以明显看出,地形的土地利用/土地覆盖(LULC)分布以不同的方式影响这些参数,因此为气候分析建立它们的行为模型是很重要的。然而,在气象参数的预测过程中,这种对地形的语义LULC知识通常被忽略。最近,我们提出了一种新的空间插值技术,即语义克里格(SemK)[3,5,7],该技术考虑了陆地-大气相互作用建模的语义LULC知识,并将其纳入现有的插值过程中,以提高精度。然而,SemK的先验相关性分析忽略了附近其他LULC类之间的相互影响。本文提出了SemK的一种新变体,即a-后验概率贝叶斯SemK (BSemK),它将SemK的先验相关分析扩展为a-后验概率分析。提出的方法提供了更准确的参数估计。与先验SemK和其他现有插值技术相比,LST数据的实验证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信