Resolutions of ideals of subspace arrangements

Pub Date : 2022-11-01 DOI:10.1216/jca.2022.14.319
Francesca Gandini
{"title":"Resolutions of ideals of subspace arrangements","authors":"Francesca Gandini","doi":"10.1216/jca.2022.14.319","DOIUrl":null,"url":null,"abstract":"Given a collection of t subspaces in an ndimensional vector space W we can associate to them t linear ideals in the symmetric algebra S(W ∗). Conca and Herzog showed that the Castelnuovo-Mumford regularity of the product of t linear ideals is equal to t. Derksen and Sidman showed that the Castelnuovo-Mumford regularity of the intersection of t linear ideals is at most t. In this paper we show that analogous results hold when we work over the exterior algebra ∧ (W ∗) (over a field of characteristic 0). To prove these results we rely on the functoriality of equivariant free resolutions and construct a functor Ω from the category of polynomial functors to itself. The functor Ω transforms resolutions of polynomial functors associated to subspace arrangements over the symmetric algebra to resolutions over the exterior algebra.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1216/jca.2022.14.319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given a collection of t subspaces in an ndimensional vector space W we can associate to them t linear ideals in the symmetric algebra S(W ∗). Conca and Herzog showed that the Castelnuovo-Mumford regularity of the product of t linear ideals is equal to t. Derksen and Sidman showed that the Castelnuovo-Mumford regularity of the intersection of t linear ideals is at most t. In this paper we show that analogous results hold when we work over the exterior algebra ∧ (W ∗) (over a field of characteristic 0). To prove these results we rely on the functoriality of equivariant free resolutions and construct a functor Ω from the category of polynomial functors to itself. The functor Ω transforms resolutions of polynomial functors associated to subspace arrangements over the symmetric algebra to resolutions over the exterior algebra.
分享
查看原文
子空间排列理想的分解
给定一个n维向量空间W中的t个子空间的集合,我们可以将对称代数S(W *)中的t个线性理想与它们联系起来。孔卡和赫尔佐格显示产品的Castelnuovo-Mumford规律的线性理想= t t。Derksen和Sidman表明Castelnuovo-Mumford规律的交集t线性理想是最多t。在本文中,我们表明,类似的结果持有当我们工作外代数∧(W∗)(0)特征的领域。为了证明这些结果我们依靠functoriality等变化自由决议和构造一个函子Ω的范畴自身的多项式函子。函子Ω将与对称代数上的子空间排列相关的多项式函子的分辨率转换为外部代数上的分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信