{"title":"Resolutions of ideals of subspace arrangements","authors":"Francesca Gandini","doi":"10.1216/jca.2022.14.319","DOIUrl":null,"url":null,"abstract":"Given a collection of t subspaces in an ndimensional vector space W we can associate to them t linear ideals in the symmetric algebra S(W ∗). Conca and Herzog showed that the Castelnuovo-Mumford regularity of the product of t linear ideals is equal to t. Derksen and Sidman showed that the Castelnuovo-Mumford regularity of the intersection of t linear ideals is at most t. In this paper we show that analogous results hold when we work over the exterior algebra ∧ (W ∗) (over a field of characteristic 0). To prove these results we rely on the functoriality of equivariant free resolutions and construct a functor Ω from the category of polynomial functors to itself. The functor Ω transforms resolutions of polynomial functors associated to subspace arrangements over the symmetric algebra to resolutions over the exterior algebra.","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":"339 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Commutative Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1216/jca.2022.14.319","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Given a collection of t subspaces in an ndimensional vector space W we can associate to them t linear ideals in the symmetric algebra S(W ∗). Conca and Herzog showed that the Castelnuovo-Mumford regularity of the product of t linear ideals is equal to t. Derksen and Sidman showed that the Castelnuovo-Mumford regularity of the intersection of t linear ideals is at most t. In this paper we show that analogous results hold when we work over the exterior algebra ∧ (W ∗) (over a field of characteristic 0). To prove these results we rely on the functoriality of equivariant free resolutions and construct a functor Ω from the category of polynomial functors to itself. The functor Ω transforms resolutions of polynomial functors associated to subspace arrangements over the symmetric algebra to resolutions over the exterior algebra.
给定一个n维向量空间W中的t个子空间的集合,我们可以将对称代数S(W *)中的t个线性理想与它们联系起来。孔卡和赫尔佐格显示产品的Castelnuovo-Mumford规律的线性理想= t t。Derksen和Sidman表明Castelnuovo-Mumford规律的交集t线性理想是最多t。在本文中,我们表明,类似的结果持有当我们工作外代数∧(W∗)(0)特征的领域。为了证明这些结果我们依靠functoriality等变化自由决议和构造一个函子Ω的范畴自身的多项式函子。函子Ω将与对称代数上的子空间排列相关的多项式函子的分辨率转换为外部代数上的分辨率。
期刊介绍:
Journal of Commutative Algebra publishes significant results in the area of commutative algebra and closely related fields including algebraic number theory, algebraic geometry, representation theory, semigroups and monoids.
The journal also publishes substantial expository/survey papers as well as conference proceedings. Any person interested in editing such a proceeding should contact one of the managing editors.