Embedding theorems for solvable groups

V. Roman’kov
{"title":"Embedding theorems for solvable groups","authors":"V. Roman’kov","doi":"10.1090/PROC/15562","DOIUrl":null,"url":null,"abstract":"In this paper, we prove a series of results on group embeddings in groups with a small number of generators. We show that each finitely generated group $G$ lying in a variety ${\\mathcal M}$ can be embedded in a $4$-generated group $H \\in {\\mathcal M}{\\mathcal A}$ (${\\mathcal A}$ means the variety of abelian groups). If $G$ is a finite group, then $H$ can also be found as a finite group. It follows, that any finitely generated (finite) solvable group $G$ of the derived length $l$ can be embedded in a $4$-generated (finite) solvable group $H$ of length $l+1$. Thus, we answer the question of V. H. Mikaelian and this http URL. Olshanskii. It is also shown that any countable group $G\\in {\\mathcal M}$, such that the abelianization $G_{ab}$ is a free abelian group, is embeddable in a $2$-generated group $H\\in {\\mathcal M}{\\mathcal A}$.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/PROC/15562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we prove a series of results on group embeddings in groups with a small number of generators. We show that each finitely generated group $G$ lying in a variety ${\mathcal M}$ can be embedded in a $4$-generated group $H \in {\mathcal M}{\mathcal A}$ (${\mathcal A}$ means the variety of abelian groups). If $G$ is a finite group, then $H$ can also be found as a finite group. It follows, that any finitely generated (finite) solvable group $G$ of the derived length $l$ can be embedded in a $4$-generated (finite) solvable group $H$ of length $l+1$. Thus, we answer the question of V. H. Mikaelian and this http URL. Olshanskii. It is also shown that any countable group $G\in {\mathcal M}$, such that the abelianization $G_{ab}$ is a free abelian group, is embeddable in a $2$-generated group $H\in {\mathcal M}{\mathcal A}$.
可解群的嵌入定理
在本文中,我们证明了在具有少量生成器的群中群嵌入的一系列结果。我们证明了${\mathcal M}$中的每一个有限生成的群$G$可以嵌入$4$生成的群$H ${\mathcal M}{\mathcal a}$ (${\mathcal a}$表示阿贝尔群的种类)。如果$G$是有限群,则$H$也可以被发现是有限群。由此可见,任何导出长度为$l$的有限生成(有限)可解群$G$可以嵌入到长度为$l+1$的$4$生成(有限)可解群$H$中。因此,我们回答了V. H. Mikaelian和这个http URL的问题。Olshanskii。还证明了任意可数群$G\in {\mathcal M}$,使得阿贝尔化$G_{ab}$是一个自由阿贝尔群,可嵌入$2$生成的群$H\in {\mathcal M}{\mathcal a}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信