Fei Li, Chenglan Xiong, Yu Rao, Yong Luan, Bernhard Weigand
{"title":"Numerical Study on Heat Transfer and Pressure Loss Characteristics of Swirl Cooling in Elliptica Tubes with Tangential Jet Inlets","authors":"Fei Li, Chenglan Xiong, Yu Rao, Yong Luan, Bernhard Weigand","doi":"10.1115/1.4063353","DOIUrl":null,"url":null,"abstract":"\n The paper presents a numerical study of the heat transfer, pressure loss and flow characteristics of swirl cooling in elliptical tubes, which are compared to the counterpart of swirl cooling in a circular tube with a diameter of D=50.0 mm under equal passage Reynolds numbers and equal jet Reynolds numbers. The swirl tubes with two kinds of fixed tube length of 12D and 20D are compared, where there are sequentially arranged three tangential jet inlets over the leading tube length of 12D. The numerical results show that the swirl tubes with the tube length of 12D has a much better heat transfer performance. Under equal passage Reynolds numbers, the elliptical swirl tubes with the tube length of 12D show appreciably higher Nusselt numbers by up to 22.8% and lower pressure loss coefficients by up to 69.0% than the circular tube. Under equal jet Reynolds numbers, the elliptical tubes can reduce the global heat transfer performance modestly by up to 25.6%, but reduce the pressure loss much significantly by up to 70.6%. Mostly due to much less pressure loss, the elliptical tubes have remarkably higher thermal performance in terms of the obtained heat transfer coefficient per unit pumping power for both L1=12D and L2=20D. The numerical simulations indicate that the suppression of elliptical tubes on the swirling flow development reduces the heat transfer on the wall between the jet inlets, and decreases the wall shear force and the pressure loss in the tube.","PeriodicalId":15937,"journal":{"name":"Journal of Heat Transfer-transactions of The Asme","volume":"110 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Heat Transfer-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4063353","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The paper presents a numerical study of the heat transfer, pressure loss and flow characteristics of swirl cooling in elliptical tubes, which are compared to the counterpart of swirl cooling in a circular tube with a diameter of D=50.0 mm under equal passage Reynolds numbers and equal jet Reynolds numbers. The swirl tubes with two kinds of fixed tube length of 12D and 20D are compared, where there are sequentially arranged three tangential jet inlets over the leading tube length of 12D. The numerical results show that the swirl tubes with the tube length of 12D has a much better heat transfer performance. Under equal passage Reynolds numbers, the elliptical swirl tubes with the tube length of 12D show appreciably higher Nusselt numbers by up to 22.8% and lower pressure loss coefficients by up to 69.0% than the circular tube. Under equal jet Reynolds numbers, the elliptical tubes can reduce the global heat transfer performance modestly by up to 25.6%, but reduce the pressure loss much significantly by up to 70.6%. Mostly due to much less pressure loss, the elliptical tubes have remarkably higher thermal performance in terms of the obtained heat transfer coefficient per unit pumping power for both L1=12D and L2=20D. The numerical simulations indicate that the suppression of elliptical tubes on the swirling flow development reduces the heat transfer on the wall between the jet inlets, and decreases the wall shear force and the pressure loss in the tube.
期刊介绍:
Topical areas including, but not limited to: Biological heat and mass transfer; Combustion and reactive flows; Conduction; Electronic and photonic cooling; Evaporation, boiling, and condensation; Experimental techniques; Forced convection; Heat exchanger fundamentals; Heat transfer enhancement; Combined heat and mass transfer; Heat transfer in manufacturing; Jets, wakes, and impingement cooling; Melting and solidification; Microscale and nanoscale heat and mass transfer; Natural and mixed convection; Porous media; Radiative heat transfer; Thermal systems; Two-phase flow and heat transfer. Such topical areas may be seen in: Aerospace; The environment; Gas turbines; Biotechnology; Electronic and photonic processes and equipment; Energy systems, Fire and combustion, heat pipes, manufacturing and materials processing, low temperature and arctic region heat transfer; Refrigeration and air conditioning; Homeland security systems; Multi-phase processes; Microscale and nanoscale devices and processes.