{"title":"자외선 차단제의 블루라이트 차단효과에 관한 연구","authors":"정상욱, 이시은, 최선영, 문권기, 임소라, 김혜경, 박종호","doi":"10.15230/SCSK.2018.44.2.183","DOIUrl":null,"url":null,"abstract":"Blue light is the highest energy wavelengths in the visible light region and induces skin aging and active oxygen. Studies on harmful mechanism of skin are under way. Research on blue light blocking materials in cosmetics and formulation studies are in the early stage, and the test methods related to blue light blocking measurement are not established. The blue light blocking efficacy was established by referring to the test method of the sunscreen in vitro test(COLIPA guideline, ISO 24443, FDA Final Rule on Sunscreen Testing and Labeling). The blue light blocking effect was evaluated for 17 kinds out of 27 kinds of sunscreen raw materials suggested in KFDA guideline. The Effect was 14.97% for zinc oxide and 16.32% for bishexyloxyphenol methoxyphenyl triazine, 35.47% for methylene bis-benzotriazolyltetramethylbutylphenol, and 65.96% for titanium dioxide. In addition, the effect of micro-titanium dioxide was twice as high as that of the nano-titanium dioxide. The results suggested that the light blocking effect test method can be used to search for blue light blocking materials and study cosmetic formulations.","PeriodicalId":17401,"journal":{"name":"Journal of the Society of Cosmetic Scientists of Korea","volume":"109 1","pages":"183-189"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Society of Cosmetic Scientists of Korea","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15230/SCSK.2018.44.2.183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Blue light is the highest energy wavelengths in the visible light region and induces skin aging and active oxygen. Studies on harmful mechanism of skin are under way. Research on blue light blocking materials in cosmetics and formulation studies are in the early stage, and the test methods related to blue light blocking measurement are not established. The blue light blocking efficacy was established by referring to the test method of the sunscreen in vitro test(COLIPA guideline, ISO 24443, FDA Final Rule on Sunscreen Testing and Labeling). The blue light blocking effect was evaluated for 17 kinds out of 27 kinds of sunscreen raw materials suggested in KFDA guideline. The Effect was 14.97% for zinc oxide and 16.32% for bishexyloxyphenol methoxyphenyl triazine, 35.47% for methylene bis-benzotriazolyltetramethylbutylphenol, and 65.96% for titanium dioxide. In addition, the effect of micro-titanium dioxide was twice as high as that of the nano-titanium dioxide. The results suggested that the light blocking effect test method can be used to search for blue light blocking materials and study cosmetic formulations.