{"title":"Role of a simplified hydrological cycle and clouds in regulating the climate-biota system of Daisyworld.","authors":"J. Salazar, G. Poveda","doi":"10.1111/J.1600-0889.2008.00411.X","DOIUrl":null,"url":null,"abstract":"The role of a simplified hydrological cycle and a physical representation of clouds is investigated in the Daisyworld model, subject to constant and variable solar forcing and varying cloud albedo and height. Under constant forcing, properties of the cloudy hydrologic cycle control the long-term system dynamics to non-oscillatory, oscillatory, abiotic or biotic states. In case of oscillatory solutions, their amplitude and periodicity are controlled by the net cooling or warming effects from clouds. Two conditions are considered under variable forcing—active or neutral—depending on the existence or not of biota–environment feedbacks. Temperature, cloudiness and hydrological variables are self-regulated in the active condition, whereas non-regulated in the neutral condition. Self-regulation is quantified through two measurements (luminosity range and total life), both of which can be larger in our model than in several other variants of Daisyworld, depending on cloud characteristics. The hydrological cycle and clouds can make the planet more habitable for life, independent of the capacity of the system for biological adaptation. Two hypotheses are put forward: (1) beneficial effects for life emerge from biota–clouds interactions, enhancing the global amount of life and extending the life span; and (ii) the existence of a maximum self-regulation capacity principle. DOI: 10.1111/j.1600-0889.2008.00411.x","PeriodicalId":54432,"journal":{"name":"Tellus Series B-Chemical and Physical Meteorology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2009-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tellus Series B-Chemical and Physical Meteorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1111/J.1600-0889.2008.00411.X","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 17
Abstract
The role of a simplified hydrological cycle and a physical representation of clouds is investigated in the Daisyworld model, subject to constant and variable solar forcing and varying cloud albedo and height. Under constant forcing, properties of the cloudy hydrologic cycle control the long-term system dynamics to non-oscillatory, oscillatory, abiotic or biotic states. In case of oscillatory solutions, their amplitude and periodicity are controlled by the net cooling or warming effects from clouds. Two conditions are considered under variable forcing—active or neutral—depending on the existence or not of biota–environment feedbacks. Temperature, cloudiness and hydrological variables are self-regulated in the active condition, whereas non-regulated in the neutral condition. Self-regulation is quantified through two measurements (luminosity range and total life), both of which can be larger in our model than in several other variants of Daisyworld, depending on cloud characteristics. The hydrological cycle and clouds can make the planet more habitable for life, independent of the capacity of the system for biological adaptation. Two hypotheses are put forward: (1) beneficial effects for life emerge from biota–clouds interactions, enhancing the global amount of life and extending the life span; and (ii) the existence of a maximum self-regulation capacity principle. DOI: 10.1111/j.1600-0889.2008.00411.x
期刊介绍:
Tellus B: Chemical and Physical Meteorology along with its sister journal Tellus A: Dynamic Meteorology and Oceanography, are the international, peer-reviewed journals of the International Meteorological Institute in Stockholm, an independent non-for-profit body integrated into the Department of Meteorology at the Faculty of Sciences of Stockholm University, Sweden. Aiming to promote the exchange of knowledge about meteorology from across a range of scientific sub-disciplines, the two journals serve an international community of researchers, policy makers, managers, media and the general public.