Deep Q-learning using redundant outputs in visual doom

Hyun-Soo Park, Kyung-Joong Kim
{"title":"Deep Q-learning using redundant outputs in visual doom","authors":"Hyun-Soo Park, Kyung-Joong Kim","doi":"10.1109/CIG.2016.7860387","DOIUrl":null,"url":null,"abstract":"Recently, there is a growing interest in applying deep learning in game AI domain. Among them, deep reinforcement learning is the most famous in game AI communities. In this paper, we propose to use redundant outputs in order to adapt training progress in deep reinforcement learning. We compare our method with general ε-greedy in ViZDoom platform. Since AI player should select an action only based on visual input in the platform, it is suitable for deep reinforcement learning research. Experimental results show that our proposed method archives competitive performance to ε-greedy without parameter tuning.","PeriodicalId":6594,"journal":{"name":"2016 IEEE Conference on Computational Intelligence and Games (CIG)","volume":"4 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computational Intelligence and Games (CIG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2016.7860387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Recently, there is a growing interest in applying deep learning in game AI domain. Among them, deep reinforcement learning is the most famous in game AI communities. In this paper, we propose to use redundant outputs in order to adapt training progress in deep reinforcement learning. We compare our method with general ε-greedy in ViZDoom platform. Since AI player should select an action only based on visual input in the platform, it is suitable for deep reinforcement learning research. Experimental results show that our proposed method archives competitive performance to ε-greedy without parameter tuning.
在视觉厄运中使用冗余输出的深度q学习
最近,人们对深度学习在游戏AI领域的应用越来越感兴趣。其中,深度强化学习在游戏AI社区中最为著名。在本文中,我们提出使用冗余输出来适应深度强化学习的训练进度。并在ViZDoom平台上与一般的ε-greedy进行了比较。由于AI玩家只需要根据平台上的视觉输入来选择一个动作,所以适合深度强化学习的研究。实验结果表明,该方法在不需要参数调整的情况下,比ε-greedy算法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信