Dynamic behaviour of concrete: the structural effects on compressive strength increase

H. L. Nard, P. Bailly
{"title":"Dynamic behaviour of concrete: the structural effects on compressive strength increase","authors":"H. L. Nard, P. Bailly","doi":"10.1002/1099-1484(200008)5:6<491::AID-CFM106>3.0.CO;2-R","DOIUrl":null,"url":null,"abstract":"Many concrete structures may be submitted to high rate dynamic loadings (impacts, explosions, etc.). So, it is necessary to know the behaviour of this material in order to predict the response of the structure. Under dynamic loading an increase of apparent compressive strength is observed. This may be due to a rheological effect or to a structural effect. Dynamic compression tests are available using the split Hopkinson pressure bars. Forces and velocities are obtained on each face of the specimen. A simulation of these tests is carried out using two different models. The first, based on plasticity theory, is a non-associated model with a failure surface of the Ottosen type. This model is independent of the strain rate. The second model is an elasto-viscoplastic model with a damage law. It only takes into account the main features of the behaviour, the sliding phenomena, the damage and the softening. The comparison of experimental results and simulations leads us to consider the structural effect as an inertial confinement responsible for the apparent increase in strength. Copyright © 2000 John Wiley & Sons, Ltd.","PeriodicalId":100899,"journal":{"name":"Mechanics of Cohesive-frictional Materials","volume":"168 1","pages":"491-510"},"PeriodicalIF":0.0000,"publicationDate":"2000-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Cohesive-frictional Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/1099-1484(200008)5:6<491::AID-CFM106>3.0.CO;2-R","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

Abstract

Many concrete structures may be submitted to high rate dynamic loadings (impacts, explosions, etc.). So, it is necessary to know the behaviour of this material in order to predict the response of the structure. Under dynamic loading an increase of apparent compressive strength is observed. This may be due to a rheological effect or to a structural effect. Dynamic compression tests are available using the split Hopkinson pressure bars. Forces and velocities are obtained on each face of the specimen. A simulation of these tests is carried out using two different models. The first, based on plasticity theory, is a non-associated model with a failure surface of the Ottosen type. This model is independent of the strain rate. The second model is an elasto-viscoplastic model with a damage law. It only takes into account the main features of the behaviour, the sliding phenomena, the damage and the softening. The comparison of experimental results and simulations leads us to consider the structural effect as an inertial confinement responsible for the apparent increase in strength. Copyright © 2000 John Wiley & Sons, Ltd.
混凝土的动力特性:结构对抗压强度增加的影响
许多混凝土结构可能承受高速率的动载荷(冲击、爆炸等)。因此,为了预测结构的响应,有必要了解这种材料的性能。在动荷载作用下,观察到表观抗压强度增加。这可能是由于流变效应或结构效应。动态压缩试验可使用分离式霍普金森压力杆。在试样的每个面上得到力和速度。使用两种不同的模型对这些试验进行了模拟。第一种是基于塑性理论的非关联模型,其破坏面为Ottosen型。该模型与应变速率无关。第二个模型是具有损伤规律的弹粘塑性模型。它只考虑了主要的行为特征、滑动现象、损伤和软化。实验结果与模拟结果的比较使我们认为结构效应是造成强度明显增加的惯性约束。版权所有©2000约翰威利父子有限公司
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信