Classification of left invariant metrics on 4-dimensional solvable Lie groups

IF 0.7 Q4 MECHANICS
T. Šukilović
{"title":"Classification of left invariant metrics on 4-dimensional solvable Lie groups","authors":"T. Šukilović","doi":"10.2298/tam200826014s","DOIUrl":null,"url":null,"abstract":"In this paper the complete classification of left invariant metrics of arbitrary signature on solvable Lie groups is given. By identifying the Lie algebra with the algebra of left invariant vector fields on the corresponding Lie group ??, the inner product ??,?? on g = Lie G extends uniquely to a left invariant metric ?? on the Lie group. Therefore, the classification problem is reduced to the problem of classification of pairs (g, ??,??) known as the metric Lie algebras. Although two metric algebras may be isometric even if the corresponding Lie algebras are non-isomorphic, this paper will show that in the 4-dimensional solvable case isometric means isomorphic. Finally, the curvature properties of the obtained metric algebras are considered and, as a corollary, the classification of flat, locally symmetric, Ricciflat, Ricci-parallel and Einstein metrics is also given.","PeriodicalId":44059,"journal":{"name":"Theoretical and Applied Mechanics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/tam200826014s","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper the complete classification of left invariant metrics of arbitrary signature on solvable Lie groups is given. By identifying the Lie algebra with the algebra of left invariant vector fields on the corresponding Lie group ??, the inner product ??,?? on g = Lie G extends uniquely to a left invariant metric ?? on the Lie group. Therefore, the classification problem is reduced to the problem of classification of pairs (g, ??,??) known as the metric Lie algebras. Although two metric algebras may be isometric even if the corresponding Lie algebras are non-isomorphic, this paper will show that in the 4-dimensional solvable case isometric means isomorphic. Finally, the curvature properties of the obtained metric algebras are considered and, as a corollary, the classification of flat, locally symmetric, Ricciflat, Ricci-parallel and Einstein metrics is also given.
四维可解李群上左不变度量的分类
本文给出了可解李群上任意签名左不变度量的完全分类。用相应李群上的左不变向量场的代数来识别李代数?,内积?? ??on g = Lie g唯一地扩展到一个左不变度规??在李群里。因此,分类问题被简化为被称为度量李代数的对(g, ??,??)的分类问题。尽管两个度量代数可以是等距的,即使对应的李代数是非同构的,但本文将证明在四维可解的情况下,等距意味着同构。最后,考虑了所得到的度量代数的曲率性质,并作为推论,给出了平面、局部对称、Ricciflat、Ricci-parallel和Einstein度量的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
4
审稿时长
32 weeks
期刊介绍: Theoretical and Applied Mechanics (TAM) invites submission of original scholarly work in all fields of theoretical and applied mechanics. TAM features selected high quality research articles that represent the broad spectrum of interest in mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信