Comparative Study of Single-task and Multi-task Learning on Research Protocol Document Classification

A. Abdillah, Mohammad Zaenuddin Hamidi, Ratih Nur Esti Anggraeni, R. Sarno
{"title":"Comparative Study of Single-task and Multi-task Learning on Research Protocol Document Classification","authors":"A. Abdillah, Mohammad Zaenuddin Hamidi, Ratih Nur Esti Anggraeni, R. Sarno","doi":"10.1109/ICTS52701.2021.9608043","DOIUrl":null,"url":null,"abstract":"Research protocol is an important document to be scrutinized by the ethical committee. As the research proposal is growing, the necessity for quick and concise protocol review is rising. This study undergoes a comparative study of multi-task learning (MTL) and single-task learning (STL) to classify research protocol documents. We try to carry out the classification process from the summary of health research. We represent research documents as multi-label classification problems and develop a deep learning model based on MTL and STL strategies. In our evaluation, multi-task learning achieved a better result with 0.125 loss and 0.785 Jaccard score than 0.182 and 0.720 in single-task learning. In consequence, MTL has a 27% slower computation time than STL.","PeriodicalId":6738,"journal":{"name":"2021 13th International Conference on Information & Communication Technology and System (ICTS)","volume":"298 1","pages":"213-217"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 13th International Conference on Information & Communication Technology and System (ICTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTS52701.2021.9608043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Research protocol is an important document to be scrutinized by the ethical committee. As the research proposal is growing, the necessity for quick and concise protocol review is rising. This study undergoes a comparative study of multi-task learning (MTL) and single-task learning (STL) to classify research protocol documents. We try to carry out the classification process from the summary of health research. We represent research documents as multi-label classification problems and develop a deep learning model based on MTL and STL strategies. In our evaluation, multi-task learning achieved a better result with 0.125 loss and 0.785 Jaccard score than 0.182 and 0.720 in single-task learning. In consequence, MTL has a 27% slower computation time than STL.
研究方案文件分类中单任务与多任务学习的比较研究
研究方案是伦理委员会审查的重要文件。随着研究计划的增加,快速、简明的方案审查的必要性也在上升。本研究采用多任务学习(MTL)和单任务学习(STL)对研究方案文件进行分类的比较研究。我们试图从健康研究的总结出发,进行分类过程。我们将研究文档表示为多标签分类问题,并开发了基于MTL和STL策略的深度学习模型。在我们的评估中,多任务学习取得了0.125 loss和0.785 Jaccard得分优于单任务学习的0.182和0.720。因此,MTL的计算时间比STL慢27%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信