Graph Regularized Meta-path Based Transductive Regression in Heterogeneous Information Network

Mengting Wan, Yunbo Ouyang, Lance M. Kaplan, Jiawei Han
{"title":"Graph Regularized Meta-path Based Transductive Regression in Heterogeneous Information Network","authors":"Mengting Wan, Yunbo Ouyang, Lance M. Kaplan, Jiawei Han","doi":"10.1137/1.9781611974010.103","DOIUrl":null,"url":null,"abstract":"A number of real-world networks are heterogeneous information networks, which are composed of different types of nodes and links. Numerical prediction in heterogeneous information networks is a challenging but significant area because network based information for unlabeled objects is usually limited to make precise estimations. In this paper, we consider a graph regularized meta-path based transductive regression model (Grempt), which combines the principal philosophies of typical graph-based transductive classification methods and transductive regression models designed for homogeneous networks. The computation of our method is time and space efficient and the precision of our model can be verified by numerical experiments.","PeriodicalId":74533,"journal":{"name":"Proceedings of the ... SIAM International Conference on Data Mining. SIAM International Conference on Data Mining","volume":"2 1","pages":"918-926"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... SIAM International Conference on Data Mining. SIAM International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611974010.103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

A number of real-world networks are heterogeneous information networks, which are composed of different types of nodes and links. Numerical prediction in heterogeneous information networks is a challenging but significant area because network based information for unlabeled objects is usually limited to make precise estimations. In this paper, we consider a graph regularized meta-path based transductive regression model (Grempt), which combines the principal philosophies of typical graph-based transductive classification methods and transductive regression models designed for homogeneous networks. The computation of our method is time and space efficient and the precision of our model can be verified by numerical experiments.
基于图正则元路径的异构信息网络转换回归
现实世界中的许多网络都是异构信息网络,由不同类型的节点和链路组成。异构信息网络中的数值预测是一个具有挑战性但又重要的领域,因为基于网络的未标记对象的信息通常局限于做出精确的估计。在本文中,我们考虑了一个基于图正则化元路径的转导回归模型(Grempt),它结合了典型的基于图的转导分类方法和为同构网络设计的转导回归模型的主要原理。该方法的计算节省了时间和空间,并通过数值实验验证了模型的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信