Next2You: Robust Copresence Detection Based on Channel State Information

IF 3.5 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Mikhail Fomichev, L. F. Abanto-Leon, Maximilian Stiegler, Alejandro Molina, Jakob Link, M. Hollick
{"title":"Next2You: Robust Copresence Detection Based on Channel State Information","authors":"Mikhail Fomichev, L. F. Abanto-Leon, Maximilian Stiegler, Alejandro Molina, Jakob Link, M. Hollick","doi":"10.1145/3491244","DOIUrl":null,"url":null,"abstract":"Context-based copresence detection schemes are a necessary prerequisite to building secure and usable authentication systems in the Internet of Things (IoT). Such schemes allow one device to verify proximity of another device without user assistance utilizing their physical context (e.g., audio). The state-of-the-art copresence detection schemes suffer from two major limitations: (1) They cannot accurately detect copresence in low-entropy context (e.g., empty room with few events occurring) and insufficiently separated environments (e.g., adjacent rooms), (2) They require devices to have common sensors (e.g., microphones) to capture context, making them impractical on devices with heterogeneous sensors. We address these limitations, proposing Next2You, a novel copresence detection scheme utilizing channel state information (CSI). In particular, we leverage magnitude and phase values from a range of subcarriers specifying a Wi-Fi channel to capture a robust wireless context created when devices communicate. We implement Next2You on off-the-shelf smartphones relying only on ubiquitous Wi-Fi chipsets and evaluate it based on over 95 hours of CSI measurements that we collect in five real-world scenarios. Next2You achieves error rates below 4%, maintaining accurate copresence detection both in low-entropy context and insufficiently separated environments. We also demonstrate the capability of Next2You to work reliably in real-time and its robustness to various attacks.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":"66 1","pages":"1 - 31"},"PeriodicalIF":3.5000,"publicationDate":"2021-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3491244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 3

Abstract

Context-based copresence detection schemes are a necessary prerequisite to building secure and usable authentication systems in the Internet of Things (IoT). Such schemes allow one device to verify proximity of another device without user assistance utilizing their physical context (e.g., audio). The state-of-the-art copresence detection schemes suffer from two major limitations: (1) They cannot accurately detect copresence in low-entropy context (e.g., empty room with few events occurring) and insufficiently separated environments (e.g., adjacent rooms), (2) They require devices to have common sensors (e.g., microphones) to capture context, making them impractical on devices with heterogeneous sensors. We address these limitations, proposing Next2You, a novel copresence detection scheme utilizing channel state information (CSI). In particular, we leverage magnitude and phase values from a range of subcarriers specifying a Wi-Fi channel to capture a robust wireless context created when devices communicate. We implement Next2You on off-the-shelf smartphones relying only on ubiquitous Wi-Fi chipsets and evaluate it based on over 95 hours of CSI measurements that we collect in five real-world scenarios. Next2You achieves error rates below 4%, maintaining accurate copresence detection both in low-entropy context and insufficiently separated environments. We also demonstrate the capability of Next2You to work reliably in real-time and its robustness to various attacks.
nextyou:基于信道状态信息的鲁棒共现检测
基于上下文的身份检测方案是在物联网(IoT)中构建安全可用的身份验证系统的必要前提。这样的方案允许一个设备验证另一个设备的接近度,而无需用户帮助利用其物理环境(例如,音频)。最先进的共现检测方案有两个主要限制:(1)它们不能准确地检测低熵环境(例如,发生事件很少的空房间)和不充分分离的环境(例如,相邻的房间)中的共现,(2)它们要求设备具有通用传感器(例如,麦克风)来捕获上下文,这使得它们在具有异构传感器的设备上不切实际。我们解决了这些限制,提出了Next2You,一种利用信道状态信息(CSI)的新型共现检测方案。特别是,我们利用指定Wi-Fi信道的一系列子载波的幅度和相位值来捕获设备通信时创建的强大无线环境。我们在现成的智能手机上实现Next2You,只依赖于无处不在的Wi-Fi芯片组,并根据我们在五个真实场景中收集的超过95小时的CSI测量结果对其进行评估。Next2You的错误率低于4%,在低熵环境和分离程度不够的环境中都能保持准确的共现检测。我们还演示了nextyou的实时可靠工作能力及其对各种攻击的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.20
自引率
3.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信