Design of an ultra-low power device for aircraft structural health monitoring

A. Perelli, Carlo Caione, L. Marchi, D. Brunelli, A. Marzani, L. Benini
{"title":"Design of an ultra-low power device for aircraft structural health monitoring","authors":"A. Perelli, Carlo Caione, L. Marchi, D. Brunelli, A. Marzani, L. Benini","doi":"10.7873/DATE.2013.236","DOIUrl":null,"url":null,"abstract":"One of the popular structural health monitoring (SHM) applications of both automotive and aeronautic fields is devoted to the non-destructive localization of impacts in plate-like structures. The aim of this paper is to develop a miniaturized, self-contained and low power device for automated impact detection that can be used in a distributed fashion without central coordination. The proposed device uses an array of four piezoelectric transducers, bonded to the plate, capable to detect the guided waves generated by an impact, to a STM32F4 board equipped with an ARM Cortex-M4 microcontroller and a IEEE802.15.4 wireless transceiver. The waves processing and the localization algorithm are implemented on-board and optimized for speed and power consumption. In particular, the localization of the impact point is obtained by cross-correlating the signals related to the same event acquired by the different sensors in the warped frequency domain. Finally the performance of the whole system is analysed in terms of localization accuracy and power consumption, showing the effectiveness of the proposed implementation.","PeriodicalId":6310,"journal":{"name":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7873/DATE.2013.236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

One of the popular structural health monitoring (SHM) applications of both automotive and aeronautic fields is devoted to the non-destructive localization of impacts in plate-like structures. The aim of this paper is to develop a miniaturized, self-contained and low power device for automated impact detection that can be used in a distributed fashion without central coordination. The proposed device uses an array of four piezoelectric transducers, bonded to the plate, capable to detect the guided waves generated by an impact, to a STM32F4 board equipped with an ARM Cortex-M4 microcontroller and a IEEE802.15.4 wireless transceiver. The waves processing and the localization algorithm are implemented on-board and optimized for speed and power consumption. In particular, the localization of the impact point is obtained by cross-correlating the signals related to the same event acquired by the different sensors in the warped frequency domain. Finally the performance of the whole system is analysed in terms of localization accuracy and power consumption, showing the effectiveness of the proposed implementation.
飞机结构健康监测超低功率装置的设计
在汽车和航空领域,结构健康监测(SHM)的一个热门应用是致力于板状结构冲击的无损定位。本文的目的是开发一种小型化、自成一体、低功耗的自动冲击检测设备,可以在没有中央协调的情况下以分布式方式使用。该装置使用了一个由四个压电换能器组成的阵列,连接在板上,能够检测由撞击产生的导波,并将其连接到配备ARM Cortex-M4微控制器和IEEE802.15.4无线收发器的STM32F4板上。波处理和定位算法在机载上实现,并对速度和功耗进行了优化。特别是,通过在翘曲频域内将不同传感器采集到的与同一事件相关的信号进行交叉相关来获得撞击点的定位。最后从定位精度和功耗两方面对整个系统的性能进行了分析,证明了所提实现的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信