Online black-box model identification and output prediction for sampled-data systems

Asim Zaheer, M. Salman
{"title":"Online black-box model identification and output prediction for sampled-data systems","authors":"Asim Zaheer, M. Salman","doi":"10.1109/ICCAS.2014.6987543","DOIUrl":null,"url":null,"abstract":"In this work, black-box model identification and output prediction for unknown sampled-data minimum phase system has been achieved. Feedforward neural network (multilayer perceptron) is used for system identification. Unscented Kalman Filter (UKF) online determine weights of neural network and predicts output in open-loop sampled-data configuration. Magnetic levitation and DC motor model has been identified in computer simulations using the presented black-box identification and prediction scheme.","PeriodicalId":6525,"journal":{"name":"2014 14th International Conference on Control, Automation and Systems (ICCAS 2014)","volume":"14 1","pages":"1095-1100"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 14th International Conference on Control, Automation and Systems (ICCAS 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAS.2014.6987543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, black-box model identification and output prediction for unknown sampled-data minimum phase system has been achieved. Feedforward neural network (multilayer perceptron) is used for system identification. Unscented Kalman Filter (UKF) online determine weights of neural network and predicts output in open-loop sampled-data configuration. Magnetic levitation and DC motor model has been identified in computer simulations using the presented black-box identification and prediction scheme.
样本数据系统的在线黑盒模型识别与输出预测
本文实现了未知采样数据最小相位系统的黑盒模型识别和输出预测。采用前馈神经网络(多层感知器)进行系统辨识。Unscented卡尔曼滤波器(UKF)在线确定神经网络的权值并预测开环采样数据配置下的输出。利用所提出的黑盒识别和预测方案,在计算机仿真中对磁悬浮和直流电机模型进行了识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信