Unified framework for an a posteriori error analysis of non-standard finite element approximations of H(curl)-elliptic problems

C. Carstensen, R. Hoppe
{"title":"Unified framework for an a posteriori error analysis of non-standard finite element approximations of H(curl)-elliptic problems","authors":"C. Carstensen, R. Hoppe","doi":"10.1515/JNUM.2009.003","DOIUrl":null,"url":null,"abstract":"Abstract A unified framework for a residual-based a posteriori error analysis of standard conforming finite element methods as well as non-standard techniques such as nonconforming and mixed methods has been developed in [Carstensen, Numer. Math. 100: 617 – 637, 2005, Carstensen, Gudi, and Jensen, A unifying theory of a posteriori error control for discontinuous Galerkin FEM, Department of Mathematics, Humboldt University of Berlin, 2008, Carstensen and Hoppe, J. Numer. Math. 13: 19 – 32, 2005, Carstensen and Hu, Numer. Math. 107: 473 – 502, 2007, Carstensen, Hu, and Orlando, SIAM J. Numer. Anal. 45: 68 – 82, 2007]. This paper provides such a framework for an a posteriori error control of nonconforming finite element discretizations of H(curl)-elliptic problems as they arise from low-frequency electromagnetics. These nonconforming approximations include the interior penalty discontinuous Galerkin (IPDG) approach considered in [Houston, Perugia, and Schötzau, SIAM J. Numer. Anal. 42: 434 – 459, 2004, Houston, Perugia, and Schötzau, IMA J. Numer. Anal. 27: 122 – 150, 2007], and mortar edge element approximations studied in [Belgacem, Buffa, and Maday, SIAM J. Numer. Anal. 39: 880 – 901, 2001, Hoppe, East-West J. Numer. Math. 7: 159 – 173, 1999, Hoppe, Adaptive domain decomposition techniques in electromagnetic field computation and electrothermomechanical coupling problems: Springer, 2002, Hoppe, J. Comp. Appl. Math. 168: 245 – 254, 2004, Hoppe, Contemporary Math. 383, 63 – 111, 2005, Rapetti, Buffa, Maday, and Bouillault, COMPEL 19: 332 – 340, 2000, Xu and Hoppe, SIAM J. Numer. Anal. 43: 1276 – 1294, 2005].","PeriodicalId":89936,"journal":{"name":"International Conference on Electromagnetics in Advanced Applications : proceedings : ICEAA. International Conference on Electromagnetics in Advanced Applications","volume":"182 1","pages":"27 - 44"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Electromagnetics in Advanced Applications : proceedings : ICEAA. International Conference on Electromagnetics in Advanced Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/JNUM.2009.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Abstract A unified framework for a residual-based a posteriori error analysis of standard conforming finite element methods as well as non-standard techniques such as nonconforming and mixed methods has been developed in [Carstensen, Numer. Math. 100: 617 – 637, 2005, Carstensen, Gudi, and Jensen, A unifying theory of a posteriori error control for discontinuous Galerkin FEM, Department of Mathematics, Humboldt University of Berlin, 2008, Carstensen and Hoppe, J. Numer. Math. 13: 19 – 32, 2005, Carstensen and Hu, Numer. Math. 107: 473 – 502, 2007, Carstensen, Hu, and Orlando, SIAM J. Numer. Anal. 45: 68 – 82, 2007]. This paper provides such a framework for an a posteriori error control of nonconforming finite element discretizations of H(curl)-elliptic problems as they arise from low-frequency electromagnetics. These nonconforming approximations include the interior penalty discontinuous Galerkin (IPDG) approach considered in [Houston, Perugia, and Schötzau, SIAM J. Numer. Anal. 42: 434 – 459, 2004, Houston, Perugia, and Schötzau, IMA J. Numer. Anal. 27: 122 – 150, 2007], and mortar edge element approximations studied in [Belgacem, Buffa, and Maday, SIAM J. Numer. Anal. 39: 880 – 901, 2001, Hoppe, East-West J. Numer. Math. 7: 159 – 173, 1999, Hoppe, Adaptive domain decomposition techniques in electromagnetic field computation and electrothermomechanical coupling problems: Springer, 2002, Hoppe, J. Comp. Appl. Math. 168: 245 – 254, 2004, Hoppe, Contemporary Math. 383, 63 – 111, 2005, Rapetti, Buffa, Maday, and Bouillault, COMPEL 19: 332 – 340, 2000, Xu and Hoppe, SIAM J. Numer. Anal. 43: 1276 – 1294, 2005].
H(旋度)椭圆问题非标准有限元近似后验误差分析的统一框架
[Carstensen, number]提出了基于残差的标准符合有限元方法和非标准方法(如非符合方法和混合方法)后验误差分析的统一框架。2005年,李志强,李志强,一种非连续Galerkin有限元后置误差控制的统一理论,德国洪堡大学数学系,2008,李志强,J. Numer。数学,13:19 - 32,2005,Carstensen和Hu,数。数学,107:473 - 502,2007,卡斯坦森,胡,奥兰多。[j].中国农业科学,2007。本文为低频电磁条件下H(旋度)椭圆型问题非协调有限元离散化的后验误差控制提供了一个框架。这些不符合近似包括[Houston, Perugia和Schötzau]中考虑的内部惩罚不连续伽辽金(IPDG)方法。Anal. 42: 434 - 459, 2004,休斯顿,佩鲁贾和Schötzau, IMA J. Numer。[j] .中文信息学报,27:122 - 150,2007],以及砂浆边缘单元近似的研究[Belgacem, Buffa和Maday, SIAM J.数字。《中国工程学报》第39期,2001年。1999,霍普,电磁场计算和机电耦合问题的自适应域分解技术:Springer, 2002,霍普,J. Comp.应用。数学。168:245 - 254,2004,Hoppe,当代数学。383:63 - 111,2005,Rapetti, Buffa, Maday, Bouillault,强迫19:332 - 340,2000,Xu和Hoppe, SIAM J.数字。[j].农业工程学报,2005,29(3):376 - 394。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信