{"title":"Intermittent resonant clocking enabling power reduction at any clock frequency for 0.37V 980kHz near-threshold logic circuits","authors":"H. Fuketa, M. Nomura, M. Takamiya, T. Sakurai","doi":"10.1109/ISSCC.2013.6487804","DOIUrl":null,"url":null,"abstract":"In order to improve the energy efficiency of logic circuits, reductions in capacitance (C) and power supply voltage (VDD) are required, as energy consumption is proportional to CVDD2. Near-threshold (Vt) operation achieves an energy minimum. Resonant clocking can reduce the effective capacitance of the clock distribution network. In this work, a new resonant clocking scheme enabling power reduction at any clock frequency is proposed and applied to a 0.37V 980kHz near-Vt logic circuit in 40nm CMOS.","PeriodicalId":6378,"journal":{"name":"2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers","volume":"29 1","pages":"436-437"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2013.6487804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
In order to improve the energy efficiency of logic circuits, reductions in capacitance (C) and power supply voltage (VDD) are required, as energy consumption is proportional to CVDD2. Near-threshold (Vt) operation achieves an energy minimum. Resonant clocking can reduce the effective capacitance of the clock distribution network. In this work, a new resonant clocking scheme enabling power reduction at any clock frequency is proposed and applied to a 0.37V 980kHz near-Vt logic circuit in 40nm CMOS.