{"title":"Dual Function Matrix Projective Synchronization for Fractional-order Hyperchaotic Systems","authors":"Jinman He, L. Pei","doi":"10.1115/1.4062452","DOIUrl":null,"url":null,"abstract":"\n It is well known that the variability and complexity of projection proportionality factors of Dual Projective Synchronization (DPS) can effectively enhance signal confidentiality. However, in most literatures, the proportionality factors are some simple fixed constants, which can't ensure high security of information. For two pairs of fractional-order hyperchaotic systems (FOHS), how to expand the projection proportionality factors to increase its complexity? Then, our work will propose a new synchronization type, i.e., Dual Function Matrix Projective Synchronization (DFMPS) and realize the DFMPS for FOHS for the first time. Firstly, based on the traditional DPS, we generalize the proportionality factors to a general function matrix depending on time t, present the error functions and define the DFMPS. Then, for FOHS, the active controller and synchronization condition are designed and proved. At the same time, when the system is affected by parameter disturbance, the proposed active controller can eliminate the influence of parameter disturbance to the system's DFMPS, which indicates that the proposed control strategy has strong robustness. Finally, the DFMPS of two pairs of fractional-order hyperchaotic Chen and Rabinovich systems are realized, and synchronizing analysis and system robustness analysis are verified by numerical simulation. Particularly, the DFMPS can be degenerated to dual anti-synchronization, dual complete synchronization, DPS, modified DPS and dual matrix projective synchronization. This work extends the synchronization types for FOHS and offers a useful method to explore DFMPS for other fractional-order systems.","PeriodicalId":54858,"journal":{"name":"Journal of Computational and Nonlinear Dynamics","volume":"40 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Nonlinear Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062452","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
It is well known that the variability and complexity of projection proportionality factors of Dual Projective Synchronization (DPS) can effectively enhance signal confidentiality. However, in most literatures, the proportionality factors are some simple fixed constants, which can't ensure high security of information. For two pairs of fractional-order hyperchaotic systems (FOHS), how to expand the projection proportionality factors to increase its complexity? Then, our work will propose a new synchronization type, i.e., Dual Function Matrix Projective Synchronization (DFMPS) and realize the DFMPS for FOHS for the first time. Firstly, based on the traditional DPS, we generalize the proportionality factors to a general function matrix depending on time t, present the error functions and define the DFMPS. Then, for FOHS, the active controller and synchronization condition are designed and proved. At the same time, when the system is affected by parameter disturbance, the proposed active controller can eliminate the influence of parameter disturbance to the system's DFMPS, which indicates that the proposed control strategy has strong robustness. Finally, the DFMPS of two pairs of fractional-order hyperchaotic Chen and Rabinovich systems are realized, and synchronizing analysis and system robustness analysis are verified by numerical simulation. Particularly, the DFMPS can be degenerated to dual anti-synchronization, dual complete synchronization, DPS, modified DPS and dual matrix projective synchronization. This work extends the synchronization types for FOHS and offers a useful method to explore DFMPS for other fractional-order systems.
期刊介绍:
The purpose of the Journal of Computational and Nonlinear Dynamics is to provide a medium for rapid dissemination of original research results in theoretical as well as applied computational and nonlinear dynamics. The journal serves as a forum for the exchange of new ideas and applications in computational, rigid and flexible multi-body system dynamics and all aspects (analytical, numerical, and experimental) of dynamics associated with nonlinear systems. The broad scope of the journal encompasses all computational and nonlinear problems occurring in aeronautical, biological, electrical, mechanical, physical, and structural systems.