Finite-dimensional Nichols algebras over the Suzuki algebras I: simple Yetter-Drinfeld modules of $A_{N\,2n}^{\mu\lambda}$

Pub Date : 2020-11-29 DOI:10.36045/j.bbms.211101
Yuxing Shi
{"title":"Finite-dimensional Nichols algebras over the Suzuki algebras I: simple Yetter-Drinfeld modules of $A_{N\\,2n}^{\\mu\\lambda}$","authors":"Yuxing Shi","doi":"10.36045/j.bbms.211101","DOIUrl":null,"url":null,"abstract":"The Suzuki algebra $A_{Nn}^{\\mu \\lambda}$ was introduced by Suzuki Satoshi in 1998, which is a class of cosemisimple Hopf algebras. It is not categorically Morita-equivalent to a group algebra in general. In this paper, the author gives a complete set of simple Yetter-Drinfeld modules over the Suzuki algebra $A_{N\\,2n}^{\\mu\\lambda}$ and investigates the Nichols algebras over those simple Yetter-Drinfeld modules. The involved finite dimensional Nichols algebras of diagonal type are of Cartan type $A_1$, $A_1\\times A_1$, $A_2$, $A_2\\times A_2$, Super type ${\\bf A}_{2}(q;I_2)$ and the Nichols algebra ufo(8). There are $64$, $4m$ and $m^2$-dimensional Nichols algebras of non-diagonal type over $A_{N\\,2n}^{\\mu \\lambda}$. The $64$-dimensional Nichols algebras are of dihedral rack type $\\Bbb{D}_4$. The $4m$ and $m^2$-dimensional Nichols algebras $\\mathfrak{B}(V_{abe})$ discovered first by Andruskiewitsch and Giraldi can be realized in the category of Yetter-Drinfeld modules over $A_{Nn}^{\\mu \\lambda}$. By using a result of Masuoka, we prove that $\\dim\\mathfrak{B}(V_{abe})=\\infty$ under the condition $b^2=(ae)^{-1}$, $b\\in\\Bbb{G}_{m}$ for $m\\geq 5$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.36045/j.bbms.211101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The Suzuki algebra $A_{Nn}^{\mu \lambda}$ was introduced by Suzuki Satoshi in 1998, which is a class of cosemisimple Hopf algebras. It is not categorically Morita-equivalent to a group algebra in general. In this paper, the author gives a complete set of simple Yetter-Drinfeld modules over the Suzuki algebra $A_{N\,2n}^{\mu\lambda}$ and investigates the Nichols algebras over those simple Yetter-Drinfeld modules. The involved finite dimensional Nichols algebras of diagonal type are of Cartan type $A_1$, $A_1\times A_1$, $A_2$, $A_2\times A_2$, Super type ${\bf A}_{2}(q;I_2)$ and the Nichols algebra ufo(8). There are $64$, $4m$ and $m^2$-dimensional Nichols algebras of non-diagonal type over $A_{N\,2n}^{\mu \lambda}$. The $64$-dimensional Nichols algebras are of dihedral rack type $\Bbb{D}_4$. The $4m$ and $m^2$-dimensional Nichols algebras $\mathfrak{B}(V_{abe})$ discovered first by Andruskiewitsch and Giraldi can be realized in the category of Yetter-Drinfeld modules over $A_{Nn}^{\mu \lambda}$. By using a result of Masuoka, we prove that $\dim\mathfrak{B}(V_{abe})=\infty$ under the condition $b^2=(ae)^{-1}$, $b\in\Bbb{G}_{m}$ for $m\geq 5$.
分享
查看原文
铃木代数I上的有限维Nichols代数:的简单yeter - drinfeld模 $A_{N\,2n}^{\mu\lambda}$
Suzuki代数$A_{Nn}^{\mu \lambda}$是由Suzuki Satoshi在1998年提出的,它是一类半简单Hopf代数。它在一般意义上与群代数不是绝对的森田等价。本文给出了Suzuki代数$A_{N\,2n}^{\mu\lambda}$上的一组简单yeter - drinfeld模的完备集,并研究了这些简单yeter - drinfeld模上的Nichols代数。所涉及的对角线型有限维Nichols代数为Cartan型$A_1$、$A_1\times A_1$、$A_2$、$A_2\times A_2$、Super型${\bf A}_{2}(q;I_2)$和Nichols代数ufo(8)。在$A_{N\,2n}^{\mu \lambda}$上有$64$、$4m$和$m^2$维非对角线型尼克尔斯代数。$64$维尼科尔斯代数为二面体齿条型$\Bbb{D}_4$。首先由Andruskiewitsch和Giraldi发现的$4m$和$m^2$维Nichols代数$\mathfrak{B}(V_{abe})$可以在$A_{Nn}^{\mu \lambda}$上的yeter - drinfeld模的范畴中实现。利用Masuoka的结果,证明了$\dim\mathfrak{B}(V_{abe})=\infty$在$b^2=(ae)^{-1}$条件下,$b\in\Bbb{G}_{m}$对于$m\geq 5$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信