Extracting Search Query Patterns via the Pairwise Coupled Topic Model

Takuya Konishi, Takuya Ohwa, Sumio Fujita, K. Ikeda, K. Hayashi
{"title":"Extracting Search Query Patterns via the Pairwise Coupled Topic Model","authors":"Takuya Konishi, Takuya Ohwa, Sumio Fujita, K. Ikeda, K. Hayashi","doi":"10.1145/2835776.2835794","DOIUrl":null,"url":null,"abstract":"A fundamental yet new challenge in information retrieval is the identification of patterns behind search queries. For example, the query \"NY restaurant\" and \"boston hotel\" shares the common pattern \"LOCATION SERVICE\". However, because of the diversity of real queries, existing approaches require data preprocessing by humans or specifying the target query domains, which hinders their applicability. We propose a probabilistic topic model that assumes that each term (e.g., \"NY\") has a topic (LOCATION). The key idea is that we consider topic co-occurrence in a query rather than a topic sequence, which significantly reduces computational cost yet enables us to acquire coherent topics without the preprocessing. Using two real query datasets, we demonstrate that the obtained topics are intelligible by humans, and are highly accurate in keyword prediction and query generation tasks.","PeriodicalId":20567,"journal":{"name":"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2835776.2835794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

A fundamental yet new challenge in information retrieval is the identification of patterns behind search queries. For example, the query "NY restaurant" and "boston hotel" shares the common pattern "LOCATION SERVICE". However, because of the diversity of real queries, existing approaches require data preprocessing by humans or specifying the target query domains, which hinders their applicability. We propose a probabilistic topic model that assumes that each term (e.g., "NY") has a topic (LOCATION). The key idea is that we consider topic co-occurrence in a query rather than a topic sequence, which significantly reduces computational cost yet enables us to acquire coherent topics without the preprocessing. Using two real query datasets, we demonstrate that the obtained topics are intelligible by humans, and are highly accurate in keyword prediction and query generation tasks.
基于成对耦合主题模型的搜索查询模式提取
信息检索中一个基本的新挑战是识别搜索查询背后的模式。例如,查询“NY restaurant”和“boston hotel”共享相同的模式“LOCATION SERVICE”。然而,由于实际查询的多样性,现有的方法需要人工对数据进行预处理或指定目标查询域,这阻碍了它们的适用性。我们提出了一个概率主题模型,该模型假设每个术语(例如“NY”)都有一个主题(LOCATION)。关键思想是我们在查询中考虑主题共现而不是主题序列,这大大降低了计算成本,并且使我们无需预处理即可获得一致的主题。使用两个真实的查询数据集,我们证明了获得的主题是可理解的,并且在关键字预测和查询生成任务中具有很高的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信