{"title":"On the asymptotic behavior of the eigenvalue distribution of block correlation matrices of high-dimensional time series","authors":"P. Loubaton, X. Mestre","doi":"10.1142/s2010326322500241","DOIUrl":null,"url":null,"abstract":"We consider linear spectral statistics built from the block-normalized correlation matrix of a set of [Formula: see text] mutually independent scalar time series. This matrix is composed of [Formula: see text] blocks. Each block has size [Formula: see text] and contains the sample cross-correlation measured at [Formula: see text] consecutive time lags between each pair of time series. Let [Formula: see text] denote the total number of consecutively observed windows that are used to estimate these correlation matrices. We analyze the asymptotic regime where [Formula: see text] while [Formula: see text], [Formula: see text]. We study the behavior of linear statistics of the eigenvalues of this block correlation matrix under these asymptotic conditions and show that the empirical eigenvalue distribution converges to a Marcenko–Pastur distribution. Our results are potentially useful in order to address the problem of testing whether a large number of time series are uncorrelated or not.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326322500241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We consider linear spectral statistics built from the block-normalized correlation matrix of a set of [Formula: see text] mutually independent scalar time series. This matrix is composed of [Formula: see text] blocks. Each block has size [Formula: see text] and contains the sample cross-correlation measured at [Formula: see text] consecutive time lags between each pair of time series. Let [Formula: see text] denote the total number of consecutively observed windows that are used to estimate these correlation matrices. We analyze the asymptotic regime where [Formula: see text] while [Formula: see text], [Formula: see text]. We study the behavior of linear statistics of the eigenvalues of this block correlation matrix under these asymptotic conditions and show that the empirical eigenvalue distribution converges to a Marcenko–Pastur distribution. Our results are potentially useful in order to address the problem of testing whether a large number of time series are uncorrelated or not.