Micro-Doppler Signal Representation for Drone Classification by Deep Learning

Julien Gérard, J. Tomasik, C. Morisseau, Arpad Rimmel, G. Vieillard
{"title":"Micro-Doppler Signal Representation for Drone Classification by Deep Learning","authors":"Julien Gérard, J. Tomasik, C. Morisseau, Arpad Rimmel, G. Vieillard","doi":"10.23919/Eusipco47968.2020.9287525","DOIUrl":null,"url":null,"abstract":"There are numerous formats which represent the micro-Doppler signature. Our goal is to determine which one is the most adapted to classify small UAV (Unmanned Aerial Vehicules) with Deep Learning. To achieve this goal, we compare drone classification results with the different micro-Doppler signatures for a given neural network. This comparison has been performed on data obtained during a radar measurement campaign. We evaluate the classification performance in function of different use conditions we identified with a given neural network. According to the experiments conducted, the recommended format is a spectrum issued from long observations as its classification results are better for most criteria.","PeriodicalId":6705,"journal":{"name":"2020 28th European Signal Processing Conference (EUSIPCO)","volume":"16 1","pages":"1561-1565"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/Eusipco47968.2020.9287525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

There are numerous formats which represent the micro-Doppler signature. Our goal is to determine which one is the most adapted to classify small UAV (Unmanned Aerial Vehicules) with Deep Learning. To achieve this goal, we compare drone classification results with the different micro-Doppler signatures for a given neural network. This comparison has been performed on data obtained during a radar measurement campaign. We evaluate the classification performance in function of different use conditions we identified with a given neural network. According to the experiments conducted, the recommended format is a spectrum issued from long observations as its classification results are better for most criteria.
基于深度学习的无人机分类微多普勒信号表示
有许多表示微多普勒信号的格式。我们的目标是确定哪一个最适合用深度学习对小型无人机(无人机)进行分类。为了实现这一目标,我们将无人机分类结果与给定神经网络的不同微多普勒特征进行比较。这种比较是在一次雷达测量活动中获得的数据上进行的。我们用给定的神经网络来评估我们识别的不同使用条件下的分类性能。根据所进行的实验,推荐的格式是由长期观察得出的光谱,因为它的分类结果对大多数标准都更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信