Force Production Mechanisms of a Heaving and Pitching Foil Operating in the Energy Harvesting Regime

Firas F. Siala, M. Prier, J. Liburdy
{"title":"Force Production Mechanisms of a Heaving and Pitching Foil Operating in the Energy Harvesting Regime","authors":"Firas F. Siala, M. Prier, J. Liburdy","doi":"10.1115/FEDSM2018-83111","DOIUrl":null,"url":null,"abstract":"The influence of vortex dynamics on the force production of a heaving and pitching foil operating in the energy harvesting regime is studied experimentally using 2C-PIV. Results are obtained for reduced frequencies in the range of k = fc/U = 0.06 to 0.14. The flow induced vertical force-time history during cyclic operation is evaluated from PIV data by using the impulse-based derivative moment transformation method. The contribution of each term in the equation is investigated. The results show that the leading edge vortex has the largest contribution to the total force, whereas the trailing edge vortex is shown to contribute negatively. In addition, the dynamics of the leading edge vortex are further analyzed by measuring the circulation and trajectory relative to the foil. It is shown that the force is not only dependent on the circulation magnitude, but also on the LEV foil-normal and chord-wise trajectories. The force-time history for all reduced frequencies exhibit two main distinct peaks. The primary peak is generated when the leading edge vortex forms. The secondary peak, on the other hand, is formed when the chord-wise convection of the leading edge vortex increases, as well as when the LEV is closer to the foil surface during the reversal of pitching motion.","PeriodicalId":23480,"journal":{"name":"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/FEDSM2018-83111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The influence of vortex dynamics on the force production of a heaving and pitching foil operating in the energy harvesting regime is studied experimentally using 2C-PIV. Results are obtained for reduced frequencies in the range of k = fc/U = 0.06 to 0.14. The flow induced vertical force-time history during cyclic operation is evaluated from PIV data by using the impulse-based derivative moment transformation method. The contribution of each term in the equation is investigated. The results show that the leading edge vortex has the largest contribution to the total force, whereas the trailing edge vortex is shown to contribute negatively. In addition, the dynamics of the leading edge vortex are further analyzed by measuring the circulation and trajectory relative to the foil. It is shown that the force is not only dependent on the circulation magnitude, but also on the LEV foil-normal and chord-wise trajectories. The force-time history for all reduced frequencies exhibit two main distinct peaks. The primary peak is generated when the leading edge vortex forms. The secondary peak, on the other hand, is formed when the chord-wise convection of the leading edge vortex increases, as well as when the LEV is closer to the foil surface during the reversal of pitching motion.
在能量收集机制下的起伏和俯仰箔的力产生机制
利用2C-PIV实验研究了涡旋动力学对能量收集工况下升沉和俯仰翼产生力的影响。在k = fc/U = 0.06至0.14的范围内得到了频率降低的结果。利用基于脉冲的导数矩变换方法,对PIV数据进行了循环工况下的垂向力-时程计算。研究了方程中每一项的贡献。结果表明:前缘涡对总力的贡献最大,尾缘涡对总力的贡献为负;此外,通过测量前缘涡相对于叶型的环流和轨迹,进一步分析了前缘涡的动力学特性。结果表明,力不仅与循环大小有关,而且与LEV箔法向和弦向轨迹有关。所有降低频率的力-时间历史表现出两个明显的峰。主峰是在前缘涡形成时产生的。另一方面,当前缘涡的弦向对流增加时,以及俯仰运动反转时LEV更靠近箔面时,会形成二次峰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信