{"title":"iStage: a deep learning based framework to determine the stage of disaster management cycle from a social media message","authors":"A. Singla, R. Agrawal","doi":"10.1108/gkmc-10-2022-0239","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThis study aims to propose iStage, i.e. an intelligent hybrid deep learning (DL)-based framework to determine the stage of the disaster to make the right decisions at the right time.\n\n\nDesign/methodology/approach\niStage acquires data from the Twitter platform and identifies the social media message as pre, during, post-disaster or irrelevant. To demonstrate the effectiveness of iStage, it is applied on cyclonic and COVID-19 disasters. The considered disaster data sets are cyclone Fani, cyclone Titli, cyclone Amphan, cyclone Nisarga and COVID-19.\n\n\nFindings\nThe experimental results demonstrate that the iStage outperforms Long Short-Term Memory Network and Convolutional Neural Network models. The proposed approach returns the best possible solution among existing research studies considering different evaluation metrics – accuracy, precision, recall, f-score, the area under receiver operating characteristic curve and the area under precision-recall curve.\n\n\nOriginality/value\niStage is built using the hybrid architecture of DL models. It is effective in decision-making. The research study helps coordinate disaster activities in a more targeted and timely manner.\n","PeriodicalId":43718,"journal":{"name":"Global Knowledge Memory and Communication","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Knowledge Memory and Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/gkmc-10-2022-0239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
This study aims to propose iStage, i.e. an intelligent hybrid deep learning (DL)-based framework to determine the stage of the disaster to make the right decisions at the right time.
Design/methodology/approach
iStage acquires data from the Twitter platform and identifies the social media message as pre, during, post-disaster or irrelevant. To demonstrate the effectiveness of iStage, it is applied on cyclonic and COVID-19 disasters. The considered disaster data sets are cyclone Fani, cyclone Titli, cyclone Amphan, cyclone Nisarga and COVID-19.
Findings
The experimental results demonstrate that the iStage outperforms Long Short-Term Memory Network and Convolutional Neural Network models. The proposed approach returns the best possible solution among existing research studies considering different evaluation metrics – accuracy, precision, recall, f-score, the area under receiver operating characteristic curve and the area under precision-recall curve.
Originality/value
iStage is built using the hybrid architecture of DL models. It is effective in decision-making. The research study helps coordinate disaster activities in a more targeted and timely manner.