Identification of Nonparametric Simultaneous Equations Models with a Residual Index Structure

Steven T. Berry, Philip A. Haile
{"title":"Identification of Nonparametric Simultaneous Equations Models with a Residual Index Structure","authors":"Steven T. Berry, Philip A. Haile","doi":"10.2139/ssrn.2898841","DOIUrl":null,"url":null,"abstract":"We present new identification results for a class of nonseparable nonparametric simultaneous equations models introduced by Matzkin (2008). These models combine traditional exclusion restrictions with a requirement that each structural error enter through a “residual index.” Our identification results are constructive and encompass a range of special cases with varying demands on the exogenous variation provided by instruments and the shape of the joint density of the structural errors. The most important of these results demonstrate identification even when instruments have limited variation. A genericity result demonstrates a formal sense in which the associated density conditions may be viewed as mild, even when instruments vary only over a small open ball.","PeriodicalId":11744,"journal":{"name":"ERN: Nonparametric Methods (Topic)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Nonparametric Methods (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2898841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

We present new identification results for a class of nonseparable nonparametric simultaneous equations models introduced by Matzkin (2008). These models combine traditional exclusion restrictions with a requirement that each structural error enter through a “residual index.” Our identification results are constructive and encompass a range of special cases with varying demands on the exogenous variation provided by instruments and the shape of the joint density of the structural errors. The most important of these results demonstrate identification even when instruments have limited variation. A genericity result demonstrates a formal sense in which the associated density conditions may be viewed as mild, even when instruments vary only over a small open ball.
含残差指标结构的非参数联立方程模型辨识
我们提出了一类由Matzkin(2008)引入的不可分离非参数联立方程模型的新的识别结果。这些模型结合了传统的排除限制和每个结构误差通过“残差指数”进入的要求。我们的识别结果是建设性的,并且包含了一系列特殊情况,这些情况对仪器提供的外生变化和结构误差的关节密度形状有不同的要求。这些结果中最重要的是,即使在仪器变化有限的情况下,也证明了识别。一个一般性的结果证明了一种形式意义,即相关的密度条件可以被视为温和的,即使仪器只在一个小的开放球上变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信