Rate of convergence of Stancu type modified $ q $-Gamma operators for functions with derivatives of bounded variation

IF 1.3 Q3 COMPUTER SCIENCE, THEORY & METHODS
H. Karsli, P. Agrawal
{"title":"Rate of convergence of Stancu type modified $ q $-Gamma operators for functions with derivatives of bounded variation","authors":"H. Karsli, P. Agrawal","doi":"10.3934/mfc.2022002","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>Recently, Karsli [<xref ref-type=\"bibr\" rid=\"b15\">15</xref>] estimated the convergence rate of the <inline-formula><tex-math id=\"M2\">\\begin{document}$ q $\\end{document}</tex-math></inline-formula>-Bernstein-Durrmeyer operators for functions whose <inline-formula><tex-math id=\"M3\">\\begin{document}$ q $\\end{document}</tex-math></inline-formula>-derivatives are of bounded variation on the interval <inline-formula><tex-math id=\"M4\">\\begin{document}$ [0, 1] $\\end{document}</tex-math></inline-formula>. Inspired by this study, in the present paper we deal with the convergence rate of a <inline-formula><tex-math id=\"M5\">\\begin{document}$ q $\\end{document}</tex-math></inline-formula>- analogue of the Stancu type modified Gamma operators, defined by Karsli et al. [<xref ref-type=\"bibr\" rid=\"b17\">17</xref>], for the functions <inline-formula><tex-math id=\"M6\">\\begin{document}$ \\varphi $\\end{document}</tex-math></inline-formula> whose <inline-formula><tex-math id=\"M7\">\\begin{document}$ q $\\end{document}</tex-math></inline-formula>-derivatives are of bounded variation on the interval <inline-formula><tex-math id=\"M8\">\\begin{document}$ [0, \\infty ). $\\end{document}</tex-math></inline-formula> We present the approximation degree for the operator <inline-formula><tex-math id=\"M9\">\\begin{document}$ \\left( { \\mathfrak{S}}_{n, \\ell, q}^{(\\alpha , \\beta )} { \\varphi}\\right)(\\mathfrak{z}) $\\end{document}</tex-math></inline-formula> at those points <inline-formula><tex-math id=\"M10\">\\begin{document}$ \\mathfrak{z} $\\end{document}</tex-math></inline-formula> at which the one sided q-derivatives<inline-formula><tex-math id=\"M11\">\\begin{document}$ {D}_{q}^{+}{ \\varphi(\\mathfrak{z})\\; and\\; D} _{q}^{-}{ \\varphi(\\mathfrak{z})} $\\end{document}</tex-math></inline-formula> exist.</p>","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":"21 1","pages":"601-615"},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical foundations of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/mfc.2022002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1

Abstract

Recently, Karsli [15] estimated the convergence rate of the \begin{document}$ q $\end{document}-Bernstein-Durrmeyer operators for functions whose \begin{document}$ q $\end{document}-derivatives are of bounded variation on the interval \begin{document}$ [0, 1] $\end{document}. Inspired by this study, in the present paper we deal with the convergence rate of a \begin{document}$ q $\end{document}- analogue of the Stancu type modified Gamma operators, defined by Karsli et al. [17], for the functions \begin{document}$ \varphi $\end{document} whose \begin{document}$ q $\end{document}-derivatives are of bounded variation on the interval \begin{document}$ [0, \infty ). $\end{document} We present the approximation degree for the operator \begin{document}$ \left( { \mathfrak{S}}_{n, \ell, q}^{(\alpha , \beta )} { \varphi}\right)(\mathfrak{z}) $\end{document} at those points \begin{document}$ \mathfrak{z} $\end{document} at which the one sided q-derivatives\begin{document}$ {D}_{q}^{+}{ \varphi(\mathfrak{z})\; and\; D} _{q}^{-}{ \varphi(\mathfrak{z})} $\end{document} exist.

具有有界变分函数的Stancu型修正$ q $-Gamma算子的收敛速度
Recently, Karsli [15] estimated the convergence rate of the \begin{document}$ q $\end{document}-Bernstein-Durrmeyer operators for functions whose \begin{document}$ q $\end{document}-derivatives are of bounded variation on the interval \begin{document}$ [0, 1] $\end{document}. Inspired by this study, in the present paper we deal with the convergence rate of a \begin{document}$ q $\end{document}- analogue of the Stancu type modified Gamma operators, defined by Karsli et al. [17], for the functions \begin{document}$ \varphi $\end{document} whose \begin{document}$ q $\end{document}-derivatives are of bounded variation on the interval \begin{document}$ [0, \infty ). $\end{document} We present the approximation degree for the operator \begin{document}$ \left( { \mathfrak{S}}_{n, \ell, q}^{(\alpha , \beta )} { \varphi}\right)(\mathfrak{z}) $\end{document} at those points \begin{document}$ \mathfrak{z} $\end{document} at which the one sided q-derivatives\begin{document}$ {D}_{q}^{+}{ \varphi(\mathfrak{z})\; and\; D} _{q}^{-}{ \varphi(\mathfrak{z})} $\end{document} exist.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信