{"title":"Rate of convergence of Stancu type modified $ q $-Gamma operators for functions with derivatives of bounded variation","authors":"H. Karsli, P. Agrawal","doi":"10.3934/mfc.2022002","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>Recently, Karsli [<xref ref-type=\"bibr\" rid=\"b15\">15</xref>] estimated the convergence rate of the <inline-formula><tex-math id=\"M2\">\\begin{document}$ q $\\end{document}</tex-math></inline-formula>-Bernstein-Durrmeyer operators for functions whose <inline-formula><tex-math id=\"M3\">\\begin{document}$ q $\\end{document}</tex-math></inline-formula>-derivatives are of bounded variation on the interval <inline-formula><tex-math id=\"M4\">\\begin{document}$ [0, 1] $\\end{document}</tex-math></inline-formula>. Inspired by this study, in the present paper we deal with the convergence rate of a <inline-formula><tex-math id=\"M5\">\\begin{document}$ q $\\end{document}</tex-math></inline-formula>- analogue of the Stancu type modified Gamma operators, defined by Karsli et al. [<xref ref-type=\"bibr\" rid=\"b17\">17</xref>], for the functions <inline-formula><tex-math id=\"M6\">\\begin{document}$ \\varphi $\\end{document}</tex-math></inline-formula> whose <inline-formula><tex-math id=\"M7\">\\begin{document}$ q $\\end{document}</tex-math></inline-formula>-derivatives are of bounded variation on the interval <inline-formula><tex-math id=\"M8\">\\begin{document}$ [0, \\infty ). $\\end{document}</tex-math></inline-formula> We present the approximation degree for the operator <inline-formula><tex-math id=\"M9\">\\begin{document}$ \\left( { \\mathfrak{S}}_{n, \\ell, q}^{(\\alpha , \\beta )} { \\varphi}\\right)(\\mathfrak{z}) $\\end{document}</tex-math></inline-formula> at those points <inline-formula><tex-math id=\"M10\">\\begin{document}$ \\mathfrak{z} $\\end{document}</tex-math></inline-formula> at which the one sided q-derivatives<inline-formula><tex-math id=\"M11\">\\begin{document}$ {D}_{q}^{+}{ \\varphi(\\mathfrak{z})\\; and\\; D} _{q}^{-}{ \\varphi(\\mathfrak{z})} $\\end{document}</tex-math></inline-formula> exist.</p>","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":"21 1","pages":"601-615"},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical foundations of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/mfc.2022002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1
Abstract
Recently, Karsli [15] estimated the convergence rate of the \begin{document}$ q $\end{document}-Bernstein-Durrmeyer operators for functions whose \begin{document}$ q $\end{document}-derivatives are of bounded variation on the interval \begin{document}$ [0, 1] $\end{document}. Inspired by this study, in the present paper we deal with the convergence rate of a \begin{document}$ q $\end{document}- analogue of the Stancu type modified Gamma operators, defined by Karsli et al. [17], for the functions \begin{document}$ \varphi $\end{document} whose \begin{document}$ q $\end{document}-derivatives are of bounded variation on the interval \begin{document}$ [0, \infty ). $\end{document} We present the approximation degree for the operator \begin{document}$ \left( { \mathfrak{S}}_{n, \ell, q}^{(\alpha , \beta )} { \varphi}\right)(\mathfrak{z}) $\end{document} at those points \begin{document}$ \mathfrak{z} $\end{document} at which the one sided q-derivatives\begin{document}$ {D}_{q}^{+}{ \varphi(\mathfrak{z})\; and\; D} _{q}^{-}{ \varphi(\mathfrak{z})} $\end{document} exist.
Recently, Karsli [15] estimated the convergence rate of the \begin{document}$ q $\end{document}-Bernstein-Durrmeyer operators for functions whose \begin{document}$ q $\end{document}-derivatives are of bounded variation on the interval \begin{document}$ [0, 1] $\end{document}. Inspired by this study, in the present paper we deal with the convergence rate of a \begin{document}$ q $\end{document}- analogue of the Stancu type modified Gamma operators, defined by Karsli et al. [17], for the functions \begin{document}$ \varphi $\end{document} whose \begin{document}$ q $\end{document}-derivatives are of bounded variation on the interval \begin{document}$ [0, \infty ). $\end{document} We present the approximation degree for the operator \begin{document}$ \left( { \mathfrak{S}}_{n, \ell, q}^{(\alpha , \beta )} { \varphi}\right)(\mathfrak{z}) $\end{document} at those points \begin{document}$ \mathfrak{z} $\end{document} at which the one sided q-derivatives\begin{document}$ {D}_{q}^{+}{ \varphi(\mathfrak{z})\; and\; D} _{q}^{-}{ \varphi(\mathfrak{z})} $\end{document} exist.