Creating a decarbonized economy: Decoupling effects and driving factors of CO2 emission of 28 industries in China

IF 4 4区 环境科学与生态学 Q2 ENVIRONMENTAL STUDIES
Gangfei Luo, T. Baležentis, Shouzhen Zeng, JiaShun Pan
{"title":"Creating a decarbonized economy: Decoupling effects and driving factors of CO2 emission of 28 industries in China","authors":"Gangfei Luo, T. Baležentis, Shouzhen Zeng, JiaShun Pan","doi":"10.1177/0958305X221109603","DOIUrl":null,"url":null,"abstract":"Identifying the carbon emission characteristics, driving factors, and decoupling status of the industrial subsectors is important for developing effective policy measures. This allows for implementing industrial emission reduction that, eventually, decouple carbon emission and economic growth. Such an analysis is especially important for the case of China on its way towards sustainable development and increasing global interrelationships. However, the literature still lacks comprehensive analysis, especially, at the industry level. This study uses the Logarithmic Mean Divisia Index and decoupling indicator to analyze how different factors contribute to CO2 emissions in 28 industries in China during 2002–2017. The results reveal that the growth of industrial CO2 emissions has been positive but decreasing. The highest CO2 emission change is observed for production and supply of electric and heat power, processing of petroleum, coking, and nuclear fuel, and smelting and pressing of metals. These sectors also show high carbon intensity levels. The economic output (scale) effect and population effect comprise the two major factors promoting the CO2 emission. The energy intensity effect is the key inhibiting factor of the industrial energy-related CO2 emission in China. The suppressive effects of energy and industrial structure have been continuously increasing. The economic growth and CO2 emission has been gradually decoupling in the case of the 28 sectors analyzed. Manufacture of cloths, leather, fur, feather, and related products as well as production and supply of gas exhibit a relatively stable strong decoupling. Based on the decoupling analysis, this study shows that energy intensity has induced the decoupling, whereas the opposite effect has occurred due to economic growth, and the other factors showed little effect on CO2 emission decoupling.","PeriodicalId":11652,"journal":{"name":"Energy & Environment","volume":"51 1","pages":"2413 - 2431"},"PeriodicalIF":4.0000,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1177/0958305X221109603","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0

Abstract

Identifying the carbon emission characteristics, driving factors, and decoupling status of the industrial subsectors is important for developing effective policy measures. This allows for implementing industrial emission reduction that, eventually, decouple carbon emission and economic growth. Such an analysis is especially important for the case of China on its way towards sustainable development and increasing global interrelationships. However, the literature still lacks comprehensive analysis, especially, at the industry level. This study uses the Logarithmic Mean Divisia Index and decoupling indicator to analyze how different factors contribute to CO2 emissions in 28 industries in China during 2002–2017. The results reveal that the growth of industrial CO2 emissions has been positive but decreasing. The highest CO2 emission change is observed for production and supply of electric and heat power, processing of petroleum, coking, and nuclear fuel, and smelting and pressing of metals. These sectors also show high carbon intensity levels. The economic output (scale) effect and population effect comprise the two major factors promoting the CO2 emission. The energy intensity effect is the key inhibiting factor of the industrial energy-related CO2 emission in China. The suppressive effects of energy and industrial structure have been continuously increasing. The economic growth and CO2 emission has been gradually decoupling in the case of the 28 sectors analyzed. Manufacture of cloths, leather, fur, feather, and related products as well as production and supply of gas exhibit a relatively stable strong decoupling. Based on the decoupling analysis, this study shows that energy intensity has induced the decoupling, whereas the opposite effect has occurred due to economic growth, and the other factors showed little effect on CO2 emission decoupling.
创建脱碳经济:中国28个行业CO2排放的脱钩效应及驱动因素
明确产业子部门的碳排放特征、驱动因素和脱钩状况对制定有效的政策措施具有重要意义。这允许实施工业减排,最终使碳排放和经济增长脱钩。这样的分析对于中国走向可持续发展和增强全球相互关系的案例尤为重要。然而,文献仍然缺乏全面的分析,特别是在行业层面。本研究采用对数均值分割指数和解耦指标分析了2002-2017年中国28个行业不同因素对二氧化碳排放的影响。结果表明:我国工业二氧化碳排放量呈正增长趋势,但呈下降趋势。最大的二氧化碳排放变化发生在电力和热能的生产和供应、石油、焦化和核燃料的加工以及金属的冶炼和压制。这些行业的碳强度也很高。经济产出(规模)效应和人口效应是促进二氧化碳排放的两大因素。能源强度效应是抑制中国工业能源相关CO2排放的关键因素。能源和产业结构的抑制作用不断增强。在分析的28个行业中,经济增长与二氧化碳排放逐渐脱钩。布料、皮革、毛皮、羽毛及相关产品的制造与气体的生产和供应呈现相对稳定的强脱钩。基于解耦分析,本研究发现能源强度诱发了碳排放的解耦,而经济增长诱发了碳排放的解耦,其他因素对碳排放的解耦影响不大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy & Environment
Energy & Environment ENVIRONMENTAL STUDIES-
CiteScore
7.60
自引率
7.10%
发文量
157
期刊介绍: Energy & Environment is an interdisciplinary journal inviting energy policy analysts, natural scientists and engineers, as well as lawyers and economists to contribute to mutual understanding and learning, believing that better communication between experts will enhance the quality of policy, advance social well-being and help to reduce conflict. The journal encourages dialogue between the social sciences as energy demand and supply are observed and analysed with reference to politics of policy-making and implementation. The rapidly evolving social and environmental impacts of energy supply, transport, production and use at all levels require contribution from many disciplines if policy is to be effective. In particular E & E invite contributions from the study of policy delivery, ultimately more important than policy formation. The geopolitics of energy are also important, as are the impacts of environmental regulations and advancing technologies on national and local politics, and even global energy politics. Energy & Environment is a forum for constructive, professional information sharing, as well as debate across disciplines and professions, including the financial sector. Mathematical articles are outside the scope of Energy & Environment. The broader policy implications of submitted research should be addressed and environmental implications, not just emission quantities, be discussed with reference to scientific assumptions. This applies especially to technical papers based on arguments suggested by other disciplines, funding bodies or directly by policy-makers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信