The Impacts and Origins of A-site Instability in Formamidinium-Cesium Lead Iodide Perovskite Solar Cells Under Extended Operation

Yanqi Luo, Nengxu Li, Zehua Chen, Xiuxiu Niu, Rishi E. Kumar, Junke Jiang, Huifen Liu, Oi Chen, B. Lai, G. Brocks, Tao Shuxia, Huanping Zhou, D. Fenning
{"title":"The Impacts and Origins of A-site Instability in Formamidinium-Cesium Lead Iodide Perovskite Solar Cells Under Extended Operation","authors":"Yanqi Luo, Nengxu Li, Zehua Chen, Xiuxiu Niu, Rishi E. Kumar, Junke Jiang, Huifen Liu, Oi Chen, B. Lai, G. Brocks, Tao Shuxia, Huanping Zhou, D. Fenning","doi":"10.1109/PVSC45281.2020.9300973","DOIUrl":null,"url":null,"abstract":"Improved understanding of the origins of instability during photovoltaic operation of perovskite solar cell materials must be established to overcome barriers to commercialization. In this study, we analyze the microscopic mechanisms of degradation in high-performing methylammonium free (FA0.9Cs0.1PbI3) perovskite solar cells (PSC) over 600 hours of operation under stressors inherent to PV operation, including heat, illumination, and a load while excluding atmospheric effects by testing in a water-and oxygen-free atmosphere. While the PSCs exhibit reasonable thermal stability, they show considerable performance loss under constant illumination or stable power output. Synchrotron-based nanoprobe X-ray fluorescence and X-ray beam induced current (XRF/XBIC) measurements reveal segregation of current-blocking Cs-rich phases during stress testing. The decrease in performance correlates with the resulting number density of the Cs-rich clusters, which varies by stress condition. These findings unveil cation-dependent instability in FA0.9Cs0.1PbI3 perovskites and provide a framework for understanding the energy landscape in alloy perovskites to guide the engineering of long-lived halide perovskite devices.","PeriodicalId":6773,"journal":{"name":"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC45281.2020.9300973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Improved understanding of the origins of instability during photovoltaic operation of perovskite solar cell materials must be established to overcome barriers to commercialization. In this study, we analyze the microscopic mechanisms of degradation in high-performing methylammonium free (FA0.9Cs0.1PbI3) perovskite solar cells (PSC) over 600 hours of operation under stressors inherent to PV operation, including heat, illumination, and a load while excluding atmospheric effects by testing in a water-and oxygen-free atmosphere. While the PSCs exhibit reasonable thermal stability, they show considerable performance loss under constant illumination or stable power output. Synchrotron-based nanoprobe X-ray fluorescence and X-ray beam induced current (XRF/XBIC) measurements reveal segregation of current-blocking Cs-rich phases during stress testing. The decrease in performance correlates with the resulting number density of the Cs-rich clusters, which varies by stress condition. These findings unveil cation-dependent instability in FA0.9Cs0.1PbI3 perovskites and provide a framework for understanding the energy landscape in alloy perovskites to guide the engineering of long-lived halide perovskite devices.
长时间运行下甲醛-铯-碘化铅钙钛矿太阳能电池a位不稳定性的影响及来源
为了克服商业化的障碍,必须建立对钙钛矿太阳能电池材料在光伏操作过程中不稳定性起源的更好理解。在这项研究中,我们分析了高性能无甲基铵(FA0.9Cs0.1PbI3)钙钛矿太阳能电池(PSC)在光伏运行中固有的压力源(包括热、光照和负载)下运行600小时以上的微观降解机制,同时通过在无水和无氧气氛中进行测试,排除了大气影响。虽然PSCs表现出合理的热稳定性,但在恒定照明或稳定功率输出下,它们表现出相当大的性能损失。基于同步加速器的纳米探针x射线荧光和x射线束感应电流(XRF/XBIC)测量揭示了应力测试中电流阻断的富cs相的偏析。性能的下降与产生的富碳簇的数量密度有关,而密度随应力条件的变化而变化。这些发现揭示了FA0.9Cs0.1PbI3钙钛矿的阳离子依赖性不稳定性,并为理解合金钙钛矿的能量格局提供了一个框架,以指导长寿命卤化物钙钛矿器件的工程设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信