Boosting energy efficiency with mirrored data block replication policy and energy scheduler

Sara Arbab Yazd, S. Venkatesan, N. Mittal
{"title":"Boosting energy efficiency with mirrored data block replication policy and energy scheduler","authors":"Sara Arbab Yazd, S. Venkatesan, N. Mittal","doi":"10.1145/2506164.2506171","DOIUrl":null,"url":null,"abstract":"Energy efficiency is one of the major challenges in big datacenters. To facilitate processing of large data sets in a distributed fashion, the MapReduce programming model is employed in these datacenters. Hadoop is an open-source implementation of MapReduce which contains a distributed file system. Hadoop Distributed File System provides a data block replication scheme to preserve reliability and data availability. The distribution of the data block replicas over the nodes is performed randomly by meeting some constraints (e.g., preventing storage of two replicas of a data block on a single node). This study makes use of flexibility in the data block placement policy to increase energy efficiency in datacenters. Furthermore, inspired by Zaharia et al.'s delay scheduling algorithm, a scheduling algorithm is introduced, which takes into account energy efficiency in addition to fairness and data locality properties. Computer simulations of the proposed method suggest its superiority over Hadoop's standard settings.","PeriodicalId":7046,"journal":{"name":"ACM SIGOPS Oper. Syst. Rev.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGOPS Oper. Syst. Rev.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2506164.2506171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Energy efficiency is one of the major challenges in big datacenters. To facilitate processing of large data sets in a distributed fashion, the MapReduce programming model is employed in these datacenters. Hadoop is an open-source implementation of MapReduce which contains a distributed file system. Hadoop Distributed File System provides a data block replication scheme to preserve reliability and data availability. The distribution of the data block replicas over the nodes is performed randomly by meeting some constraints (e.g., preventing storage of two replicas of a data block on a single node). This study makes use of flexibility in the data block placement policy to increase energy efficiency in datacenters. Furthermore, inspired by Zaharia et al.'s delay scheduling algorithm, a scheduling algorithm is introduced, which takes into account energy efficiency in addition to fairness and data locality properties. Computer simulations of the proposed method suggest its superiority over Hadoop's standard settings.
使用镜像数据块复制策略和能源调度器提高能源效率
能源效率是大数据中心面临的主要挑战之一。为了便于以分布式方式处理大型数据集,这些数据中心采用了MapReduce编程模型。Hadoop是MapReduce的开源实现,它包含一个分布式文件系统。Hadoop分布式文件系统提供数据块复制方案,保证数据的可靠性和可用性。通过满足一些约束(例如,防止在单个节点上存储数据块的两个副本),数据块副本在节点上的分布是随机执行的。本研究利用数据块放置策略的灵活性来提高数据中心的能源效率。在此基础上,受Zaharia等人延迟调度算法的启发,提出了一种既考虑公平性和数据局部性又考虑能效的调度算法。计算机模拟表明,该方法优于Hadoop的标准设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信