Use of Modularity as a Principle of Design of Metal-organic Framework-based Materials with Specified Properties for Creating Modern Protective Equipment
{"title":"Use of Modularity as a Principle of Design of Metal-organic Framework-based Materials with Specified Properties for Creating Modern Protective Equipment","authors":"","doi":"10.35825/2587-5728-2021-5-2-165-172","DOIUrl":null,"url":null,"abstract":"An earlier analysis of approaches to the creation and improvement of protective materials and tissues made it possible to assume that the development of personal protective equipment (PPE) against various\ndamaging factors of chemical, biological and physical nature can in future go towards the creation of modular organometallic frame structures (MOF-materials) with specific properties (from toxic chemicals and pathogenic microorganisms). The aim of this article is to develop and disclose the principle of modularity of construction of protective materials based on MOF-structures with specific properties. The principle of modularity of construction of protective materials with specific properties, proposed by us, is based on the use of single unified platform, on the surface of which special modules or combinations of modules are applied, which ensure the protection from various factors of chemical, biological and physical\nnature. The universal structure of MOF, called «MOF-universal», has been substantiated. The composition and properties of individual modules, possible and optimal combinations of modules of MOF-structures, the importance and significance of individual modules and their combinations for imparting universal protective properties to MOF-material are determined. The use of this principle will make it possible to impart protective properties to almost any clothing, while maintaining its physiological and hygienic characteristics and providing the required level of protection for personnel, without using specialized personal protective equipment.","PeriodicalId":16578,"journal":{"name":"Journal of NBC Protection Corps","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of NBC Protection Corps","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35825/2587-5728-2021-5-2-165-172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
An earlier analysis of approaches to the creation and improvement of protective materials and tissues made it possible to assume that the development of personal protective equipment (PPE) against various
damaging factors of chemical, biological and physical nature can in future go towards the creation of modular organometallic frame structures (MOF-materials) with specific properties (from toxic chemicals and pathogenic microorganisms). The aim of this article is to develop and disclose the principle of modularity of construction of protective materials based on MOF-structures with specific properties. The principle of modularity of construction of protective materials with specific properties, proposed by us, is based on the use of single unified platform, on the surface of which special modules or combinations of modules are applied, which ensure the protection from various factors of chemical, biological and physical
nature. The universal structure of MOF, called «MOF-universal», has been substantiated. The composition and properties of individual modules, possible and optimal combinations of modules of MOF-structures, the importance and significance of individual modules and their combinations for imparting universal protective properties to MOF-material are determined. The use of this principle will make it possible to impart protective properties to almost any clothing, while maintaining its physiological and hygienic characteristics and providing the required level of protection for personnel, without using specialized personal protective equipment.