{"title":"Tuning Proportional-Integral-Derivative Gains of a Three-Dimensional RRRP Pick and Place Robot for Asymptotic Trajectory Tracking","authors":"S. Dutta, B. S. Reddy, S. K. Dwivedy","doi":"10.1115/1.4048585","DOIUrl":null,"url":null,"abstract":"\n This paper uses the Floquet theory for tuning the feedback gains to stabilize the tracking errors of a revolute-revolute-revolute-prismatic (RRRP) robot moving in a three-dimensional (3D) workspace. This robot is driven by a proportional-integral-derivative (PID) control law, tracking a time-varying trajectory in joint space, without knowledge of any bounds of the inertia matrix and/or Jacobian of the gravity vector. The Floquet theory is used to obtain the values of feedback gains for which the asymptotic stability of the tracking errors is obtained. The numerical results obtained by Floquet theory are verified by the tracking error plots and phase portraits. The obtained results will be very useful for the control of any industrial robot, required to perform repetitive tasks like assembly of parts and inspection of products, amongst others.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":"76 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1115/1.4048585","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 1
Abstract
This paper uses the Floquet theory for tuning the feedback gains to stabilize the tracking errors of a revolute-revolute-revolute-prismatic (RRRP) robot moving in a three-dimensional (3D) workspace. This robot is driven by a proportional-integral-derivative (PID) control law, tracking a time-varying trajectory in joint space, without knowledge of any bounds of the inertia matrix and/or Jacobian of the gravity vector. The Floquet theory is used to obtain the values of feedback gains for which the asymptotic stability of the tracking errors is obtained. The numerical results obtained by Floquet theory are verified by the tracking error plots and phase portraits. The obtained results will be very useful for the control of any industrial robot, required to perform repetitive tasks like assembly of parts and inspection of products, amongst others.
期刊介绍:
The Journal of Dynamic Systems, Measurement, and Control publishes theoretical and applied original papers in the traditional areas implied by its name, as well as papers in interdisciplinary areas. Theoretical papers should present new theoretical developments and knowledge for controls of dynamical systems together with clear engineering motivation for the new theory. New theory or results that are only of mathematical interest without a clear engineering motivation or have a cursory relevance only are discouraged. "Application" is understood to include modeling, simulation of realistic systems, and corroboration of theory with emphasis on demonstrated practicality.