Operators That Commute with Slant Toeplitz Operators

Mark Ho, M. Wong
{"title":"Operators That Commute with Slant Toeplitz Operators","authors":"Mark Ho, M. Wong","doi":"10.1093/AMRX/ABN003","DOIUrl":null,"url":null,"abstract":"Let H be a separable Hilbert space and {en : n ∈ Z} be an orthonormal basis in H. A bounded operator T is called the slant Toeplitz operator if 〈T ej, ei〉 = c2i− j, where cn is the nth Fourier coefficient of a bounded Lebesgue measurable function φ on the unit circle T = {z ∈ C : |z| = 1}. It has been shown [9], with some assumption on the smoothness and the zeros of φ, that T ∗ is similar to either the constant multiple of a shift or to the constant multiple of the direct sum of a shift and a rank one unitary, with infinite multiplicity. These results, together with the theory of shifts (e.g., in [11]), allows us to identify all bounded operators on H commuting with such T .","PeriodicalId":89656,"journal":{"name":"Applied mathematics research express : AMRX","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2010-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied mathematics research express : AMRX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/AMRX/ABN003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Let H be a separable Hilbert space and {en : n ∈ Z} be an orthonormal basis in H. A bounded operator T is called the slant Toeplitz operator if 〈T ej, ei〉 = c2i− j, where cn is the nth Fourier coefficient of a bounded Lebesgue measurable function φ on the unit circle T = {z ∈ C : |z| = 1}. It has been shown [9], with some assumption on the smoothness and the zeros of φ, that T ∗ is similar to either the constant multiple of a shift or to the constant multiple of the direct sum of a shift and a rank one unitary, with infinite multiplicity. These results, together with the theory of shifts (e.g., in [11]), allows us to identify all bounded operators on H commuting with such T .
与斜Toeplitz算子交换的算子
设H是一个可分离的Hilbert空间,{en: n∈Z}是H中的一个标准正交基,如果< T ej, ei > = c2i−j,则有界算子T称为斜Toeplitz算子,其中cn是单位圆T = {Z∈C: | Z | = 1}上有界Lebesgue可测函数φ的第n个傅立叶系数。已经证明[9],在对φ的光滑性和零的某些假设下,T *类似于一个移位的常数倍,或者类似于一个移位与一个秩一酉的直和的常数倍,具有无穷倍性。这些结果,连同移位理论(例如,在[11]中),使我们能够识别H与这样的T交换上的所有有界算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信