{"title":"Lecture on the anomalous diffusion in Condensed Matter Physics","authors":"M. Benhamou","doi":"10.23647/ca.md20180730","DOIUrl":null,"url":null,"abstract":"Diffusion is a natural or artificial process that governs many phenomena in nature. The most known diffusion is the Brownian or normal motion, where the mean-square-displacement of the tracer (diffusive particle among others) increases as the square-root of time. It is not the case, however, for complex systems, where the diffusion is rather slow, because at small-scales, these media present an heterogenous structure. This kind of slow motion is called subdiffusion, where the associated mean-square-displacement increases in time, with a non trivial exponent, alpha, whose value is between 0 and 1. In this review paper, we report on new trends dealing with the study of the anomalous diffusion in Condensed Matter Physics. The study is achieved using a theoretical approach that is based on a Generalized Langevin Equation. As particular crowded systems, we choose the so-called Pickering emulsions (oil-in-water), and we are interested in how the dispersed droplets (protected by small solid charged nanoparticles) can diffuse in the continuous phase (water). Dynamic study is accomplished through the mean-square-displacement and the velocity-autocorrelation-function. Finally, a comparison with Molecular Dynamics data is made.","PeriodicalId":19388,"journal":{"name":"OAJ Materials and Devices","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OAJ Materials and Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23647/ca.md20180730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Diffusion is a natural or artificial process that governs many phenomena in nature. The most known diffusion is the Brownian or normal motion, where the mean-square-displacement of the tracer (diffusive particle among others) increases as the square-root of time. It is not the case, however, for complex systems, where the diffusion is rather slow, because at small-scales, these media present an heterogenous structure. This kind of slow motion is called subdiffusion, where the associated mean-square-displacement increases in time, with a non trivial exponent, alpha, whose value is between 0 and 1. In this review paper, we report on new trends dealing with the study of the anomalous diffusion in Condensed Matter Physics. The study is achieved using a theoretical approach that is based on a Generalized Langevin Equation. As particular crowded systems, we choose the so-called Pickering emulsions (oil-in-water), and we are interested in how the dispersed droplets (protected by small solid charged nanoparticles) can diffuse in the continuous phase (water). Dynamic study is accomplished through the mean-square-displacement and the velocity-autocorrelation-function. Finally, a comparison with Molecular Dynamics data is made.