{"title":"Kinetics and Mechanism of the Oxidation of Naphthol Green B by Peroxydisulphate Ion in Aqueous Acidic Medium","authors":"B. Myek, S. Idris, J. Iyun","doi":"10.1155/2014/768575","DOIUrl":null,"url":null,"abstract":"The kinetics of the oxidation of naphthol green B (NGB3−) by peroxydisulphate ion has been carried out in aqueous acidic medium at of 700 nm, °C, and mol dm−3 (NaCl). The reaction shows a first-order dependence on oxidant and reductant concentration, respectively. The stoichiometry of the NGB— reaction is 1 : 2. Change in hydrogen ions concentration of the reaction medium has no effect on the rate of the reaction. Added cations and anions decreased the rate of the reaction. The results of spectroscopic and kinetic investigation indicate that no intermediate complex is probably formed in the course of this reaction.","PeriodicalId":14074,"journal":{"name":"International Journal of Inorganic Chemistry","volume":"283 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Inorganic Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2014/768575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The kinetics of the oxidation of naphthol green B (NGB3−) by peroxydisulphate ion has been carried out in aqueous acidic medium at of 700 nm, °C, and mol dm−3 (NaCl). The reaction shows a first-order dependence on oxidant and reductant concentration, respectively. The stoichiometry of the NGB— reaction is 1 : 2. Change in hydrogen ions concentration of the reaction medium has no effect on the rate of the reaction. Added cations and anions decreased the rate of the reaction. The results of spectroscopic and kinetic investigation indicate that no intermediate complex is probably formed in the course of this reaction.