Mutual Fund Performance Evaluation System Using Fast Adaptive Neural Network Classifier

Kehluh Wang, Szuwei Huang, Yi-Hsuan Chen
{"title":"Mutual Fund Performance Evaluation System Using Fast Adaptive Neural Network Classifier","authors":"Kehluh Wang, Szuwei Huang, Yi-Hsuan Chen","doi":"10.1109/ICNC.2008.756","DOIUrl":null,"url":null,"abstract":"Application of financial information systems requires instant and fast response for continually changing market conditions. The purpose of this paper is to construct a mutual fund performance evaluation model utilizing the fast adaptive neural network classifier (FANNC), and to compare our results with those from a backpropagation neural networks (BPN) model. In our experiment, the FANNC approach requires much less time than the BPN approach to evaluate mutual fund performance. RMS is also superior for FANNC. These results hold for both classification problems and for prediction problems, making FANNC ideal for financial applications which require massive volumes of data and routine updates.","PeriodicalId":6404,"journal":{"name":"2008 Fourth International Conference on Natural Computation","volume":"36 1","pages":"479-483"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Fourth International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2008.756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Application of financial information systems requires instant and fast response for continually changing market conditions. The purpose of this paper is to construct a mutual fund performance evaluation model utilizing the fast adaptive neural network classifier (FANNC), and to compare our results with those from a backpropagation neural networks (BPN) model. In our experiment, the FANNC approach requires much less time than the BPN approach to evaluate mutual fund performance. RMS is also superior for FANNC. These results hold for both classification problems and for prediction problems, making FANNC ideal for financial applications which require massive volumes of data and routine updates.
基于快速自适应神经网络分类器的共同基金业绩评价系统
金融信息系统的应用要求对不断变化的市场情况作出即时和快速的反应。本文的目的是利用快速自适应神经网络分类器(FANNC)构建一个共同基金绩效评估模型,并将我们的结果与反向传播神经网络(BPN)模型的结果进行比较。在我们的实验中,FANNC方法比BPN方法需要更少的时间来评估共同基金的表现。RMS也优于FANNC。这些结果适用于分类问题和预测问题,使FANNC成为需要大量数据和常规更新的金融应用的理想选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信