Partial Identification of Discrete Instrumental Variable Models using Shape Restrictions

Takuya Ishihara
{"title":"Partial Identification of Discrete Instrumental Variable Models using Shape Restrictions","authors":"Takuya Ishihara","doi":"10.2139/ssrn.3711861","DOIUrl":null,"url":null,"abstract":"This study examines the nonparametric instrumental variable model with discrete instruments and explores the partial identification and estimation of the target parameter, which is a linear functional of the structural function. We include numerous target parameters, such as the difference between the values of the structural function at two different points and the average effect of a hypothetical policy change. Informative bounds on the target parameter are derived using the control function approach and shape restrictions. Illustrative examples demonstrate that shape restrictions have identification power. The lower and upper bounds are estimated using the sieve method and we show that our estimator is computationally convenient and consistent. An empirical application illustrates the usefulness of our method.","PeriodicalId":11744,"journal":{"name":"ERN: Nonparametric Methods (Topic)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Nonparametric Methods (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3711861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This study examines the nonparametric instrumental variable model with discrete instruments and explores the partial identification and estimation of the target parameter, which is a linear functional of the structural function. We include numerous target parameters, such as the difference between the values of the structural function at two different points and the average effect of a hypothetical policy change. Informative bounds on the target parameter are derived using the control function approach and shape restrictions. Illustrative examples demonstrate that shape restrictions have identification power. The lower and upper bounds are estimated using the sieve method and we show that our estimator is computationally convenient and consistent. An empirical application illustrates the usefulness of our method.
使用形状限制的离散工具变量模型的部分辨识
本文利用离散仪器对非参数工具变量模型进行了研究,并探讨了目标参数的部分辨识和估计,目标参数是结构函数的线性函数。我们包含了许多目标参数,例如结构函数在两个不同点的值之间的差和假设政策变化的平均效果。利用控制函数法和形状限制导出了目标参数的信息边界。举例说明,形状限制具有识别能力。用筛法估计了下界和上界,结果表明我们的估计方法计算方便,一致性好。一个实证应用说明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信