Numerical Study of the Effect of Temperature on the Performance of a Silicon Heterojunction Solar Cell (HIT) in the Presence of Excitons

O. Ngom, M. Faye, M. Mbaye, C. Mbow, B. Ba
{"title":"Numerical Study of the Effect of Temperature on the Performance of a Silicon Heterojunction Solar Cell (HIT) in the Presence of Excitons","authors":"O. Ngom, M. Faye, M. Mbaye, C. Mbow, B. Ba","doi":"10.11648/J.IJMSA.20190804.11","DOIUrl":null,"url":null,"abstract":"In this article, a detailed study of the physical phenomena in the base of a silicon heterojunction solar cell (HIT) is elaborated. To carry out this work we have established a mathematical model which is in the form of a system of two continuity equations. The latter are subjected to physical conditions of nature to define our field of study. This system of continuity equations is solved using a computational program in a digital programming language. Numerical analysis is used in this study because the mathematical system describing the transport phenomena of load carriers (electrons and excitons) in a silicon heterojunction photovoltaic cell is very complex. Thus, to facilitate numerical resolution, the dimensional parameters of the physical system are rendered dimensionless. The resulting dimensionless equations are discretized by the finite volume method. They are then implemented in a calculation program by an iterative line-by-line relaxation method of the Gauss-Siedel type. In addition, with a low density coupling coefficient b=10-16cm3s-1 that depends on the material’s properties, the influence of temperature on the diffusion lengths, on the carrier and photocurrent densities, and on the internal quantum yield is studied. This study is carried out using polychromatic illumination with ultraviolet, visible and infrared wavelengths.","PeriodicalId":14116,"journal":{"name":"International Journal of Materials Science and Applications","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Materials Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.IJMSA.20190804.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this article, a detailed study of the physical phenomena in the base of a silicon heterojunction solar cell (HIT) is elaborated. To carry out this work we have established a mathematical model which is in the form of a system of two continuity equations. The latter are subjected to physical conditions of nature to define our field of study. This system of continuity equations is solved using a computational program in a digital programming language. Numerical analysis is used in this study because the mathematical system describing the transport phenomena of load carriers (electrons and excitons) in a silicon heterojunction photovoltaic cell is very complex. Thus, to facilitate numerical resolution, the dimensional parameters of the physical system are rendered dimensionless. The resulting dimensionless equations are discretized by the finite volume method. They are then implemented in a calculation program by an iterative line-by-line relaxation method of the Gauss-Siedel type. In addition, with a low density coupling coefficient b=10-16cm3s-1 that depends on the material’s properties, the influence of temperature on the diffusion lengths, on the carrier and photocurrent densities, and on the internal quantum yield is studied. This study is carried out using polychromatic illumination with ultraviolet, visible and infrared wavelengths.
温度对激子存在下硅异质结太阳能电池性能影响的数值研究
本文对硅异质结太阳能电池(HIT)基底的物理现象进行了详细的研究。为了完成这项工作,我们建立了一个由两个连续方程组成的系统的数学模型。后者受制于自然的物理条件来界定我们的研究领域。用数字编程语言编制的计算程序求解了该连续方程组。由于描述硅异质结光伏电池中载流子(电子和激子)输运现象的数学系统非常复杂,因此本研究采用数值分析方法。因此,为了便于数值分辨,物理系统的尺寸参数被表示为无因次的。所得的无量纲方程用有限体积法离散化。然后在计算程序中通过逐行迭代的高斯-塞德尔型松弛方法来实现它们。此外,在低密度耦合系数b=10-16cm3s-1(取决于材料性质)的情况下,研究了温度对扩散长度、载流子和光电流密度以及内量子产率的影响。本研究采用紫外、可见光和红外波长的多色照明进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信