S. DeVries, E. D. De Silva, D. Canaperi, A. Simon, A. A. de la peña, Wei Wang, J. Maniscalco, Luciana Meli, B. Mendoza
{"title":"Comparing PVD Titanium Nitride Film Properties and their Effect on Beyond 7 nm EUV Patterning","authors":"S. DeVries, E. D. De Silva, D. Canaperi, A. Simon, A. A. de la peña, Wei Wang, J. Maniscalco, Luciana Meli, B. Mendoza","doi":"10.1109/ASMC49169.2020.9185256","DOIUrl":null,"url":null,"abstract":"Two sources of physical vapor deposition (PVD) titanium nitride (TiN) are compared for beyond 7 nm extreme ultraviolet (EUV) single expose patterning applications. The film density, stress, and grain size affect etch characteristics and refractive index affects lithography and overlay. It was learned that tuning and controlling the film characteristics using radio frequency physical vapor deposition (RFPVD) is critical to patterning applications beyond the 7 nm node.","PeriodicalId":6771,"journal":{"name":"2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","volume":"5 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASMC49169.2020.9185256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Two sources of physical vapor deposition (PVD) titanium nitride (TiN) are compared for beyond 7 nm extreme ultraviolet (EUV) single expose patterning applications. The film density, stress, and grain size affect etch characteristics and refractive index affects lithography and overlay. It was learned that tuning and controlling the film characteristics using radio frequency physical vapor deposition (RFPVD) is critical to patterning applications beyond the 7 nm node.