Reduced Cross-Polarization Patch Antenna with Optimized Impedance Matching Using a Complimentary Split Ring Resonator and Slots as Defected Ground Structure

IF 0.6 4区 计算机科学 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Narayanasamy RajeshKumar, P. Sathya, S. Rahim, A. Eteng
{"title":"Reduced Cross-Polarization Patch Antenna with Optimized Impedance Matching Using a Complimentary Split Ring Resonator and Slots as Defected Ground Structure","authors":"Narayanasamy RajeshKumar, P. Sathya, S. Rahim, A. Eteng","doi":"10.47037/2020.aces.j.360613","DOIUrl":null,"url":null,"abstract":"An innovative method is proposed to improve the cross-polarization performance and impedance matching of a microstrip antenna by integrating a complimentary split ring resonator and slots as a defected ground structure. An equivalent circuit model (ECM) enables the design take into consideration the mutual coupling between the antenna patch and the Defected Ground Structure. The input impedance and surface current density analysis confirms that the integration of a CSRR within a rectangular microstrip\npatch antenna leads to uniform comparative cross-polarization level below 40 dB in the H-plane, over an angular range of ± 50°. Introducing parallel slots, as well, leads to a reduction of spurious antenna radiation, thereby improving the impedance matching. Measurements conducted on a fabricated prototype are consistent with simulation results. The proposed antenna has a peak gain of 4.16 dB at 2.6 GHz resonating frequency, and hence is good candidate for broadband service applications.","PeriodicalId":8207,"journal":{"name":"Applied Computational Electromagnetics Society Journal","volume":"4 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computational Electromagnetics Society Journal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.47037/2020.aces.j.360613","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2

Abstract

An innovative method is proposed to improve the cross-polarization performance and impedance matching of a microstrip antenna by integrating a complimentary split ring resonator and slots as a defected ground structure. An equivalent circuit model (ECM) enables the design take into consideration the mutual coupling between the antenna patch and the Defected Ground Structure. The input impedance and surface current density analysis confirms that the integration of a CSRR within a rectangular microstrip patch antenna leads to uniform comparative cross-polarization level below 40 dB in the H-plane, over an angular range of ± 50°. Introducing parallel slots, as well, leads to a reduction of spurious antenna radiation, thereby improving the impedance matching. Measurements conducted on a fabricated prototype are consistent with simulation results. The proposed antenna has a peak gain of 4.16 dB at 2.6 GHz resonating frequency, and hence is good candidate for broadband service applications.
利用互补裂环谐振器和槽作为缺陷地结构的优化阻抗匹配的减小交叉极化贴片天线
提出了一种创新的方法,通过将互补的劈裂环谐振器和槽作为缺陷地结构集成在一起,来改善微带天线的交叉极化性能和阻抗匹配。等效电路模型(ECM)使设计能够考虑天线贴片和缺陷地结构之间的相互耦合。输入阻抗和表面电流密度分析证实,在矩形微带贴片天线内集成CSRR可以在±50°的角度范围内,在h平面内获得低于40 dB的均匀比较交叉极化电平。引入平行槽也可以减少天线杂散辐射,从而改善阻抗匹配。在制作的样机上进行的测量与仿真结果一致。该天线在2.6 GHz谐振频率下的峰值增益为4.16 dB,是宽带业务应用的理想选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
28.60%
发文量
75
审稿时长
9 months
期刊介绍: The ACES Journal is devoted to the exchange of information in computational electromagnetics, to the advancement of the state of the art, and to the promotion of related technical activities. A primary objective of the information exchange is the elimination of the need to "re-invent the wheel" to solve a previously solved computational problem in electrical engineering, physics, or related fields of study. The ACES Journal welcomes original, previously unpublished papers, relating to applied computational electromagnetics. All papers are refereed. A unique feature of ACES Journal is the publication of unsuccessful efforts in applied computational electromagnetics. Publication of such material provides a means to discuss problem areas in electromagnetic modeling. Manuscripts representing an unsuccessful application or negative result in computational electromagnetics is considered for publication only if a reasonable expectation of success (and a reasonable effort) are reflected. The technical activities promoted by this publication include code validation, performance analysis, and input/output standardization; code or technique optimization and error minimization; innovations in solution technique or in data input/output; identification of new applications for electromagnetics modeling codes and techniques; integration of computational electromagnetics techniques with new computer architectures; and correlation of computational parameters with physical mechanisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信