{"title":"Verification of fault tolerant safety I&C systems using model checking","authors":"A. Pakonen, I. Buzhinsky","doi":"10.1109/ICIT.2019.8755014","DOIUrl":null,"url":null,"abstract":"Model checking has been successfully used for detailed formal verification of instrumentation and control (I&C) systems, as long as the focus has been on the application logic, alone. In safety-critical applications, fault tolerance is also an important aspect, but introducing I&C hardware failure modes to the formal models comes at a significant computational cost. Previous attempts have led to state space explosion, and prohibitively long processing times. In this paper, we present a method for adding hardware component failures and communication delays into I&C application logic models for the NuSMV symbolic model checker. Based on a case study built around a semi-fictitious, four-redundant nuclear power plant protection system, we demonstrate how even detailed system designs can be verified, if the focus is kept on single failure tolerance.","PeriodicalId":6701,"journal":{"name":"2019 IEEE International Conference on Industrial Technology (ICIT)","volume":"4 1","pages":"969-974"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Industrial Technology (ICIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2019.8755014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Model checking has been successfully used for detailed formal verification of instrumentation and control (I&C) systems, as long as the focus has been on the application logic, alone. In safety-critical applications, fault tolerance is also an important aspect, but introducing I&C hardware failure modes to the formal models comes at a significant computational cost. Previous attempts have led to state space explosion, and prohibitively long processing times. In this paper, we present a method for adding hardware component failures and communication delays into I&C application logic models for the NuSMV symbolic model checker. Based on a case study built around a semi-fictitious, four-redundant nuclear power plant protection system, we demonstrate how even detailed system designs can be verified, if the focus is kept on single failure tolerance.