{"title":"Second-order convolutional network for crowd counting","authors":"Luyang Wang, Qiang Zhai, B. Yin, Hazrat Bilal","doi":"10.1117/12.2540362","DOIUrl":null,"url":null,"abstract":"Single image crowd counting remains challenging primarily due to various issues, such as large scale variations, perspective and non-uniform crowd distribution. In this paper, we propose a novel architecture referred to Second-Order Convolutional Network (SOCN) to deal with this task from the perspective of improving the feature transformation capability of the network. The proposed SOCN applies a convolutional neural network as the backbone. We introduce three cascaded second-order blocks located behind the backbone to augment the family of transformation operations and increase the nonlinearity of the network, which can extract multi-scale and discriminative features. Furthermore, we design a context attention module (CAM) including dilated convolutions to assign weights to the score map of each second-order block for the purpose that the features which contribute to counting can be highlighted. We conduct various experiments on ShanghaiTeach1 and UCF_CC_502 datasets, and the results demonstrate the effectiveness of our method.","PeriodicalId":90079,"journal":{"name":"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging","volume":"65 1","pages":"111980T - 111980T-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"78","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2540362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 78
Abstract
Single image crowd counting remains challenging primarily due to various issues, such as large scale variations, perspective and non-uniform crowd distribution. In this paper, we propose a novel architecture referred to Second-Order Convolutional Network (SOCN) to deal with this task from the perspective of improving the feature transformation capability of the network. The proposed SOCN applies a convolutional neural network as the backbone. We introduce three cascaded second-order blocks located behind the backbone to augment the family of transformation operations and increase the nonlinearity of the network, which can extract multi-scale and discriminative features. Furthermore, we design a context attention module (CAM) including dilated convolutions to assign weights to the score map of each second-order block for the purpose that the features which contribute to counting can be highlighted. We conduct various experiments on ShanghaiTeach1 and UCF_CC_502 datasets, and the results demonstrate the effectiveness of our method.