{"title":"vSensor","authors":"Xiongchao Tang, Jidong Zhai, Xuehai Qian, Bingsheng He, W. Xue, Wenguang Chen","doi":"10.1145/3200691.3178497","DOIUrl":null,"url":null,"abstract":"Performance variance becomes increasingly challenging on current large-scale HPC systems. Even using a fixed number of computing nodes, the execution time of several runs can vary significantly. Many parallel programs executing on supercomputers suffer from such variance. Performance variance not only causes unpredictable performance requirement violations, but also makes it unintuitive to understand the program behavior. Despite prior efforts, efficient on-line detection of performance variance remains an open problem. In this paper, we propose vSensor, a novel approach for light-weight and on-line performance variance detection. The key insight is that, instead of solely relying on an external detector, the source code of a program itself could reveal the runtime performance characteristics. Specifically, many parallel programs contain code snippets that are executed repeatedly with an invariant quantity of work. Based on this observation, we use compiler techniques to automatically identify these fixed-workload snippets and use them as performance variance sensors (v-sensors) that enable effective detection. We evaluate vSensor with a variety of parallel programs on the Tianhe-2 system. Results show that vSensor can effectively detect performance variance on HPC systems. The performance overhead is smaller than 4% with up to 16,384 processes. In particular, with vSensor, we found a bad node with slow memory that slowed a program's performance by 21%. As a showcase, we also detected a severe network performance problem that caused a 3.37X slowdown for an HPC kernel program on the Tianhe-2 system.","PeriodicalId":50923,"journal":{"name":"ACM Sigplan Notices","volume":"17 1","pages":"124 - 136"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Sigplan Notices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3200691.3178497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Performance variance becomes increasingly challenging on current large-scale HPC systems. Even using a fixed number of computing nodes, the execution time of several runs can vary significantly. Many parallel programs executing on supercomputers suffer from such variance. Performance variance not only causes unpredictable performance requirement violations, but also makes it unintuitive to understand the program behavior. Despite prior efforts, efficient on-line detection of performance variance remains an open problem. In this paper, we propose vSensor, a novel approach for light-weight and on-line performance variance detection. The key insight is that, instead of solely relying on an external detector, the source code of a program itself could reveal the runtime performance characteristics. Specifically, many parallel programs contain code snippets that are executed repeatedly with an invariant quantity of work. Based on this observation, we use compiler techniques to automatically identify these fixed-workload snippets and use them as performance variance sensors (v-sensors) that enable effective detection. We evaluate vSensor with a variety of parallel programs on the Tianhe-2 system. Results show that vSensor can effectively detect performance variance on HPC systems. The performance overhead is smaller than 4% with up to 16,384 processes. In particular, with vSensor, we found a bad node with slow memory that slowed a program's performance by 21%. As a showcase, we also detected a severe network performance problem that caused a 3.37X slowdown for an HPC kernel program on the Tianhe-2 system.
期刊介绍:
The ACM Special Interest Group on Programming Languages explores programming language concepts and tools, focusing on design, implementation, practice, and theory. Its members are programming language developers, educators, implementers, researchers, theoreticians, and users. SIGPLAN sponsors several major annual conferences, including the Symposium on Principles of Programming Languages (POPL), the Symposium on Principles and Practice of Parallel Programming (PPoPP), the Conference on Programming Language Design and Implementation (PLDI), the International Conference on Functional Programming (ICFP), the International Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), as well as more than a dozen other events of either smaller size or in-cooperation with other SIGs. The monthly "ACM SIGPLAN Notices" publishes proceedings of selected sponsored events and an annual report on SIGPLAN activities. Members receive discounts on conference registrations and free access to ACM SIGPLAN publications in the ACM Digital Library. SIGPLAN recognizes significant research and service contributions of individuals with a variety of awards, supports current members through the Professional Activities Committee, and encourages future programming language enthusiasts with frequent Programming Languages Mentoring Workshops (PLMW).