Non-Native Children Speech Recognition Through Transfer Learning

M. Matassoni, R. Gretter, D. Falavigna, D. Giuliani
{"title":"Non-Native Children Speech Recognition Through Transfer Learning","authors":"M. Matassoni, R. Gretter, D. Falavigna, D. Giuliani","doi":"10.1109/ICASSP.2018.8462059","DOIUrl":null,"url":null,"abstract":"This work deals with non-native children's speech and investigates both multi-task and transfer learning approaches to adapt a multi-language Deep Neural Network (DNN) to speakers, specifically children, learning a foreign language. The application scenario is characterized by young students learning English and German and reading sentences in these second-languages, as well as in their mother language. The paper analyzes and discusses techniques for training effective DNN-based acoustic models starting from children's native speech and performing adaptation with limited non-native audio material. A multi -lingual model is adopted as baseline, where a common phonetic lexicon, defined in terms of the units of the International Phonetic Alphabet (IPA), is shared across the three languages at hand (Italian, German and English); DNN adaptation methods based on transfer learning are evaluated on significant non-native evaluation sets. Results show that the resulting non-native models allow a significant improvement with respect to a mono-lingual system adapted to speakers of the target language.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"137 1","pages":"6229-6233"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2018.8462059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

This work deals with non-native children's speech and investigates both multi-task and transfer learning approaches to adapt a multi-language Deep Neural Network (DNN) to speakers, specifically children, learning a foreign language. The application scenario is characterized by young students learning English and German and reading sentences in these second-languages, as well as in their mother language. The paper analyzes and discusses techniques for training effective DNN-based acoustic models starting from children's native speech and performing adaptation with limited non-native audio material. A multi -lingual model is adopted as baseline, where a common phonetic lexicon, defined in terms of the units of the International Phonetic Alphabet (IPA), is shared across the three languages at hand (Italian, German and English); DNN adaptation methods based on transfer learning are evaluated on significant non-native evaluation sets. Results show that the resulting non-native models allow a significant improvement with respect to a mono-lingual system adapted to speakers of the target language.
通过迁移学习的非母语儿童语音识别
这项工作涉及非母语儿童的语言,并研究了多任务和迁移学习方法,以使多语言深度神经网络(DNN)适应说话者,特别是儿童学习外语。应用场景的特点是年轻学生学习英语和德语,并阅读这两种第二语言和母语的句子。本文分析和讨论了训练有效的基于dnn的声学模型的技术,从儿童的母语语言开始,使用有限的非母语音频材料进行适应。采用多语言模型作为基准,其中以国际音标(IPA)单位定义的共同语音词汇在手边的三种语言(意大利语、德语和英语)中共享;基于迁移学习的深度神经网络自适应方法在显著的非原生评价集上进行了评价。结果表明,由此产生的非本地模型相对于适应目标语言使用者的单语系统有了显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信