News stories and images of immigration online: A quantitative analysis of digital-native and traditional news websites of different political orientations and social media engagement

IF 0.7 Q3 COMMUNICATION
Umberto Famulari, L. Major
{"title":"News stories and images of immigration online: A quantitative analysis of digital-native and traditional news websites of different political orientations and social media engagement","authors":"Umberto Famulari, L. Major","doi":"10.1080/15456870.2022.2049794","DOIUrl":null,"url":null,"abstract":"ABSTRACT The study employed a quantitative content analysis of stories (N = 1200) and photographs (N = 1200) to examine how U.S. digital-native and traditional news websites of different political orientations (right-leaning vs left-leaning) represented immigration in frames, topics and visual frames. Social media engagement was also analyzed to understand how people react to news content. Both in stories and images, left-leaning news websites focused more often on victimization, while right-leaning outlets emphasized threat. This trend was even more pronounced among digital-native news websites. Traditional left-leaning news sites generated the highest number of social media interactions.","PeriodicalId":45354,"journal":{"name":"Atlantic Journal of Communication","volume":"106 1","pages":"207 - 226"},"PeriodicalIF":0.7000,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atlantic Journal of Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15456870.2022.2049794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMMUNICATION","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT The study employed a quantitative content analysis of stories (N = 1200) and photographs (N = 1200) to examine how U.S. digital-native and traditional news websites of different political orientations (right-leaning vs left-leaning) represented immigration in frames, topics and visual frames. Social media engagement was also analyzed to understand how people react to news content. Both in stories and images, left-leaning news websites focused more often on victimization, while right-leaning outlets emphasized threat. This trend was even more pronounced among digital-native news websites. Traditional left-leaning news sites generated the highest number of social media interactions.
在线移民的新闻报道和图像:不同政治取向和社交媒体参与的数字原生和传统新闻网站的定量分析
摘要:本研究采用故事(N = 1200)和照片(N = 1200)的定量内容分析,考察不同政治倾向(右倾与左倾)的美国数字原生新闻网站和传统新闻网站如何在框架、主题和视觉框架中呈现移民。研究人员还分析了社交媒体参与度,以了解人们对新闻内容的反应。在报道和图片上,左倾新闻网站更多地关注受害者,而右倾新闻网站则强调威胁。这一趋势在数字原生新闻网站中更为明显。传统的左倾新闻网站产生了最多的社交媒体互动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
14.30%
发文量
32
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信