Block-Coded PSK Modulation Using Two-Level Group Codes Over Dihedral Groups

Jyoti Bali, B. Rajan
{"title":"Block-Coded PSK Modulation Using Two-Level Group Codes Over Dihedral Groups","authors":"Jyoti Bali, B. Rajan","doi":"10.1109/18.681341","DOIUrl":null,"url":null,"abstract":"A length n group code over a group G is a subgroup of G/sup n/ under component-wise group operation. Group codes over dihedral groups D/sub M/, with 2M elements, that are two-level constructible using a binary code and a code over Z/sub M/ residue class integer ring modulo M, as component codes are studied for arbitrary M. A set of necessary and sufficient conditions on the component codes for the two-level construction to result in a group code over D/sub M/ are obtained. The conditions differ for M odd and even. Using two-level group codes over D/sub M/ as label codes, the performance of a block-coded modulation scheme is discussed under all possible matched labelings of 2M-APSK and 2M-SPSK (asymmetric and symmetric PSK) signal sets in terms of the minimum squared Euclidean distance. Matched labelings that lead to automorphic Euclidean distance equivalent codes are identified. It is shown that depending upon the ratio of Hamming distances of the component codes some labelings perform better than others. The best labeling is identified under a set of restrictive conditions. Finally, conditions on the component codes for phase rotational invariance properties of the signal space codes are discussed.","PeriodicalId":13250,"journal":{"name":"IEEE Trans. Inf. Theory","volume":"32 1","pages":"1620-1631"},"PeriodicalIF":0.0000,"publicationDate":"1998-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Inf. Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/18.681341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

A length n group code over a group G is a subgroup of G/sup n/ under component-wise group operation. Group codes over dihedral groups D/sub M/, with 2M elements, that are two-level constructible using a binary code and a code over Z/sub M/ residue class integer ring modulo M, as component codes are studied for arbitrary M. A set of necessary and sufficient conditions on the component codes for the two-level construction to result in a group code over D/sub M/ are obtained. The conditions differ for M odd and even. Using two-level group codes over D/sub M/ as label codes, the performance of a block-coded modulation scheme is discussed under all possible matched labelings of 2M-APSK and 2M-SPSK (asymmetric and symmetric PSK) signal sets in terms of the minimum squared Euclidean distance. Matched labelings that lead to automorphic Euclidean distance equivalent codes are identified. It is shown that depending upon the ratio of Hamming distances of the component codes some labelings perform better than others. The best labeling is identified under a set of restrictive conditions. Finally, conditions on the component codes for phase rotational invariance properties of the signal space codes are discussed.
在二面体群上使用二电平群码的分组编码PSK调制
在分组运算中,长度为n的组码在组G上是G/sup n/的子群。研究了具有2M个元的二面体群D/sub M/上的群码,这些群码可以用二进制码和Z/sub M/残类整数环模M上的码作为分量码任意M的两层构造,得到了两层构造产生D/sub M/上的群码的一组充分必要条件。对于奇数M和偶数M,条件是不同的。采用D/sub / M/上的两电平群码作为标签码,讨论了在2M-APSK和2M-SPSK(不对称和对称PSK)信号集的最小平方欧氏距离的所有可能匹配标记下,分组编码调制方案的性能。匹配标签导致自同构欧氏距离等效码被识别。结果表明,根据各成分码的汉明距离之比,某些标记的性能优于其他标记。最好的标签是在一组限制性条件下确定的。最后,讨论了信号空间码的相位旋转不变性条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信