{"title":"Diurnal and acclimatory responses of violaxanthin and lutein epoxide in the Australian mistletoe Amyema miquelii","authors":"S. Matsubara, A. Gilmore, C. B. Osmond","doi":"10.1071/PP01031","DOIUrl":null,"url":null,"abstract":"This study investigated the chloroplast pigment content of the Australian mistletoe Amyema miquelii (Lehm. ex Miq.) Tiegh. over diurnal periods in sun- and shade-acclimated leaves. Amyema miquelii exhibited the typical higher plant complement of neoxanthin, the xanthophyll cycle pigments, lutein, chlorophylls a and b and β carotene. Substantial levels of lutein epoxide were also present. Interestingly, diurnal light exposure elicited a decrease in lutein epoxide that paralleled the decrease in violaxanthin. Compared with shade-acclimated leaves, sun leaves exhibited reduced lutein epoxide and violaxanthin levels and higher chlorophyll a/b ratios. It is clear that the pools of violaxanthin and lutein epoxide respond in parallel to both diurnal light changes and sun-shade acclimation, although there seemed to be some differences in the recovery characteristics. These results raise a question as to whether lutein and lutein epoxide cycling may provide an auxiliary means of energy dissipation for some species.","PeriodicalId":8650,"journal":{"name":"Australian Journal of Plant Physiology","volume":"29 1","pages":"793-800"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Plant Physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1071/PP01031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 66
Abstract
This study investigated the chloroplast pigment content of the Australian mistletoe Amyema miquelii (Lehm. ex Miq.) Tiegh. over diurnal periods in sun- and shade-acclimated leaves. Amyema miquelii exhibited the typical higher plant complement of neoxanthin, the xanthophyll cycle pigments, lutein, chlorophylls a and b and β carotene. Substantial levels of lutein epoxide were also present. Interestingly, diurnal light exposure elicited a decrease in lutein epoxide that paralleled the decrease in violaxanthin. Compared with shade-acclimated leaves, sun leaves exhibited reduced lutein epoxide and violaxanthin levels and higher chlorophyll a/b ratios. It is clear that the pools of violaxanthin and lutein epoxide respond in parallel to both diurnal light changes and sun-shade acclimation, although there seemed to be some differences in the recovery characteristics. These results raise a question as to whether lutein and lutein epoxide cycling may provide an auxiliary means of energy dissipation for some species.