Optimal boundary regularity for some singular Monge-Ampère equations on bounded convex domains

N. Le
{"title":"Optimal boundary regularity for some singular Monge-Ampère equations on bounded convex domains","authors":"N. Le","doi":"10.3934/dcds.2021188","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>By constructing explicit supersolutions, we obtain the optimal global Hölder regularity for several singular Monge-Ampère equations on general bounded open convex domains including those related to complete affine hyperbolic spheres, and proper affine hyperspheres. Our analysis reveals that certain singular-looking equations, such as <inline-formula><tex-math id=\"M1\">\\begin{document}$ \\det D^2 u = |u|^{-n-2-k} (x\\cdot Du -u)^{-k} $\\end{document}</tex-math></inline-formula> with zero boundary data, have unexpected degenerate nature.</p>","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Continuous Dynamical Systems - S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcds.2021188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

By constructing explicit supersolutions, we obtain the optimal global Hölder regularity for several singular Monge-Ampère equations on general bounded open convex domains including those related to complete affine hyperbolic spheres, and proper affine hyperspheres. Our analysis reveals that certain singular-looking equations, such as \begin{document}$ \det D^2 u = |u|^{-n-2-k} (x\cdot Du -u)^{-k} $\end{document} with zero boundary data, have unexpected degenerate nature.

有界凸域上奇异monge - ampantere方程的最优边界正则性
By constructing explicit supersolutions, we obtain the optimal global Hölder regularity for several singular Monge-Ampère equations on general bounded open convex domains including those related to complete affine hyperbolic spheres, and proper affine hyperspheres. Our analysis reveals that certain singular-looking equations, such as \begin{document}$ \det D^2 u = |u|^{-n-2-k} (x\cdot Du -u)^{-k} $\end{document} with zero boundary data, have unexpected degenerate nature.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信