M. Bokalič, U. Opara Krašovec, M. Hočevar, M. Topič
{"title":"Spatial characterization techniques for dye-sensitized solar cells","authors":"M. Bokalič, U. Opara Krašovec, M. Hočevar, M. Topič","doi":"10.1109/PVSC.2012.6317882","DOIUrl":null,"url":null,"abstract":"Spatial characterization techniques are applied to dye-sensitized solar cells (DSSCs). A comparison between transmittance imaging (TI), light-beam-induced-current (LBIC) scan and electroluminescence imaging is carried out. Detected types of inhomogeneities have different fingerprints by each applied technique. Electroluminescence (EL) is advantageous over TI because the electrical activity of the inhomogeneities influences the result. EL is also advantageous over the LBIC scan due to shorter acquisition time. Based on the above findings, EL has been used for characterization of DSSCs during outdoor short-term aging, showing that EL imaging is a proper method to follow the evolution of the inhomogeneities. Proof-of-concept EL inspection of a screen-printed dyesensitized solar module shows good uniformity.","PeriodicalId":6318,"journal":{"name":"2012 38th IEEE Photovoltaic Specialists Conference","volume":"30 1","pages":"001507-001511"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 38th IEEE Photovoltaic Specialists Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2012.6317882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Spatial characterization techniques are applied to dye-sensitized solar cells (DSSCs). A comparison between transmittance imaging (TI), light-beam-induced-current (LBIC) scan and electroluminescence imaging is carried out. Detected types of inhomogeneities have different fingerprints by each applied technique. Electroluminescence (EL) is advantageous over TI because the electrical activity of the inhomogeneities influences the result. EL is also advantageous over the LBIC scan due to shorter acquisition time. Based on the above findings, EL has been used for characterization of DSSCs during outdoor short-term aging, showing that EL imaging is a proper method to follow the evolution of the inhomogeneities. Proof-of-concept EL inspection of a screen-printed dyesensitized solar module shows good uniformity.