{"title":"Optimization design for multiple dynamic vibration absorbers on damped structures using equivalent linearization method","authors":"Vu Duc Phuc, Van-The Tran","doi":"10.1177/14644193211053547","DOIUrl":null,"url":null,"abstract":"The dynamic vibration absorber and tuned mass damper are widely used to suppress harmful vibration of the damped structures under external excitation. The multiple dynamic vibration absorbers have more benefit than the single dynamic vibration absorber. The multiple dynamic vibration absorbers are portability and easy to install because its size is significantly reduced compared to an individual damper. This paper proposes a design method to obtain optimal parameters of multiple dynamic vibration absorbers attached on damped primary structures by using the least squares estimation of equivalent linearization method. An explicit expression of damping ratio and tuning parameters of multiple dynamic vibration absorbers are determined for minimizing the maximum displacement of the primary structures based on the fixed-point theory. The new contribution is provided a reliable theoretical basis for optimizing parameters of the multiple dynamic vibration absorbers that are attached on the damped primary structures. The numerical results reveal the effectiveness of the proposed optimal parameters of multiple dynamic vibration absorbers in reduce vibration of damped primary structures. In the practical applications, this research results allow to divide a large dynamic vibration absorber into many equivalent small dynamic vibration absorbers, which are convenient for manufacturing and installing on the damped primary structures such as high buildings and cable-stayed bridges.","PeriodicalId":54565,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part K-Journal of Multi-Body Dynamics","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2021-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part K-Journal of Multi-Body Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14644193211053547","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The dynamic vibration absorber and tuned mass damper are widely used to suppress harmful vibration of the damped structures under external excitation. The multiple dynamic vibration absorbers have more benefit than the single dynamic vibration absorber. The multiple dynamic vibration absorbers are portability and easy to install because its size is significantly reduced compared to an individual damper. This paper proposes a design method to obtain optimal parameters of multiple dynamic vibration absorbers attached on damped primary structures by using the least squares estimation of equivalent linearization method. An explicit expression of damping ratio and tuning parameters of multiple dynamic vibration absorbers are determined for minimizing the maximum displacement of the primary structures based on the fixed-point theory. The new contribution is provided a reliable theoretical basis for optimizing parameters of the multiple dynamic vibration absorbers that are attached on the damped primary structures. The numerical results reveal the effectiveness of the proposed optimal parameters of multiple dynamic vibration absorbers in reduce vibration of damped primary structures. In the practical applications, this research results allow to divide a large dynamic vibration absorber into many equivalent small dynamic vibration absorbers, which are convenient for manufacturing and installing on the damped primary structures such as high buildings and cable-stayed bridges.
期刊介绍:
The Journal of Multi-body Dynamics is a multi-disciplinary forum covering all aspects of mechanical design and dynamic analysis of multi-body systems. It is essential reading for academic and industrial research and development departments active in the mechanical design, monitoring and dynamic analysis of multi-body systems.